7. 김규범, 2005, 지하수 관측망 최적설계 및 시계열 자료 해석, 서울대학교 박사학위 논문, 서울
8. 민경덕, 이영훈, 이사로, 김윤종, 한정상, 1996, DRASTIC을 이용한 지하수 오염 가능성 분석 및 그래픽 사용자 인터페이스 개발 연구, 지하수환경, 3(2), 101-109
9. 유성렬, 2001, GIS를 이용한 무주 지역의 지하수 오염취약성 평가, 연세대학교 석사학위 논문, 서울
10. 이사로, 김윤종, 1996, DRASTIC system을 이용한 지하수 오염 가능성 및 위험 분석 연구, 한국GIS학회지 4(1), 1-11
11. 이사로, 최순학, 1997, GIS 기법을 이용한 영광지역의 지하수 오염취약성 평가, 지하수환경, 4(4), 223-230
12. 이현주, 박은규, 김강주, 박기훈, 2008, DRASTIC 모델 및 지하수 수치모사 연계 적용에 의한 부여읍 일대의 지하수 오염취약성 평가, 지하수토양환경, 13(1), 77-91
13. 조시범, 민경덕, 우남칠, 이사로, 1999, GIS를 이용한 경기도 평택군 지역의 지하수 오염 가능성 평가 연구, 지하수환경, 6(2), 87-94
14. 조시범과 손호웅, 2004, 지하수 오염 예측을 위한 GIS 활용 연구, 지구물리, 7(2), 121-134
15. 한국지질자원연구원, 2004, 지질도 GIS 시스템 구축 보고서, 국무총리실, 서울
16. 함세영, 정재열, 김무진, 김인수, 황한석, 2004, DRASTIC과 지하수 수질에 의한 창원시 지하수 오염취약성 평가, 자원환경지질, 37(6), 631-645
17. Albinet, M. and Margat, J., 1970, Cartographie de la vulnerabilite a la pollution des nappes d'eau souterraine, Bulletin BRGM 2nd Series, 3(4), 13-22
18. Aller, L. and Ballou, K., 1991, Ground Water Pollution Potential of Lake County, Ohio, Ohio Department of Natural Resources, p. 39
19. Aller, L., Bennett, T., Lehr, J.H., and Petty, R.J., 1985, DRASTIC: A Standardized System for Evaluating Groundwater Pollution Using Hydrogeologic Settings, EPA/600/2-85/018, Oklahoma, USA, p. 163
20. Backman, B., Bodis, D., Lahermo, P., Rapant, S., and Tarvainen, T., 1998, Application of a contamination index in Finland and Slovakia, Environ. Geology, 36, 55-64
21. Barrocu, G., Muzzu, M., and Uras, G., 2007, Hydrogeology and vulnerability map (Epik method) of the "Supermonte" karstic system, north-central Sardinia, Environ. Geology, 51(5), 701-706
22. Brechenmacher, J., 2002, Vulnerability mapping in the karst system, Sierra de Libar, Andalusia, MSc thesis, University of Karlsruhe, Karlsruhe, Germany
23. Brosig, K., Geyer, T., Subah, A., and Sauter, M., 2008, Travel time based approach for the assessment of vulnerability of karst groundwater: the Transit Time Method, Environ. Geology, 54(5), 905-911
24. Caponera, F., 1989, Remote Sensing Applications to Water Resources: Remote Sensing Image Interpretation for Ground Water Surveying, Food and Agriculture Organization of the United Nations, Rome, p. 234
25. Casas, A.M., Cortes, A.L., Maestro, A., Soriano, M.A., Riaguas, A., and Bernal, J., 2000, LINDENS: A program for lineament length and density analysis, Comp. Geosci., 26(9/10), 1011-1022
26. Cho, M., Choi, Y., Ha, K., Kee, W., Lachassagne, P., and Wyns, R., 2002, Paleoweathering covers in Korean hard rocks: a methodology for mapping their spatial distribution and the thickness of their constituting horizons; Applications to identify brittle deformation and to hard rock hydrogeology, KIGAM Bulletin 6(2), 12-25
27. Cho, M., Choi, Y., Ha, K., Kee, W., Lachassagne, P., and Wyns, R., 2003, Relationship between the permeability of hard-rock aquifers and their weathered cover based on geological and hydrogeological observations in South Korea, International Association of Hydrogeologist IAH Conference on "Groundwater in Fractured Rocks", Prague, Czech Republic, p. 41-42
28. Civita, M. and de Maio, M., 1997, Assessing groundwater contamination risk using Arc/Info via GRID function, Proceedings of ESRI User Conference, San Diego, USA
29. Cornaton, F., Goldscheider, N., Jeannin, P.Y., Perrochet, P., Pochon, A., Sinreich, M., and Zwahlen, F., 2004, The VULK analytical transport model and mapping method, In: F. Zwahlen (ed.), Vulnerability and Risk Mapping for the Protection of Carbonate (Karst) Aquifers, Final report (COST Action 620)
30. Corniello, A., Ducci, D., and Monti, GM., 2004, Aquifer pollution vulnerability in the Sorrento peninsula, southern Italy, evaluated by SINTACS method, Geofisica Internacional, 43(4), 575-581
31. COST, 2002, Vulnerability and Risk Mapping for the Protection of Carbonate (Karst) Aquifers, COST Action 620-Final Report 1st draft
32. Costa, R.D. and Starkey, J., 2001, Photolin: a program to identify and analyze linear structures in aerial photographs, satellite images and maps, Comp. Geosci., 27, 527-534
33. Daniel, C.C.III., 1989, Statistical Analysis Relating Well Yield to Construction Practices and Siting of Wells in the Piedmont and Blue Ridge Provinces of North Carolina, U.S. Geological Survey Water Supply Paper 2341-A, 27 p
34. Dewandel, B., Lachassagne, P., Wyns, R., Marechal, J.C., and Krishnamurthy, N.S., 2006, A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering, J. Hydro., 330, 260-284
35. Dragon, K., 2007, Application of a groundwater contamination index to assessment of confined aquifer vulnerability, In: Witkowski et al. (ed.), Groundwater Vulnerability Assessment and Mapping, Taylor and Francis, London, p. 87-93
36. Duijenbooden, W. and Waegeningh, H.G., 1987, Vulnerability of soil and groundwater to pollutants, Proceedings and Information, No.38 the International Conference held in Netherlands, 1987, TNO Committee on Hydrological Research, Delft, The Netherlands
37. EPA, 1993, PRZM-2: A Model for Predicting Pesticide Fate in the Crop Root and Unsaturated Soil Zones: User Manual for Release 2.0, US Environmental Protection Agency, EPA 600/R-93/045, p. 406
38. Erwin, M.L. and Tesoriero, A.J., 1997, Predicting Groundwater Vulnerability to Nitrate in the Puget Sound Basin, US Geological Survey Fact Sheet 061-97, p. 4
39. Ferreira, J.P.L. and Oliveira, M.M., 2004, Groundwater vulnerability assessment in Portugal, Geofisica Internacional, 43(4), 541-550
40. Focazio, M.J., Reilly, T.E., Rupert, M.G., and Helsel, D.R., 2002, Assessing Ground-water Vulnerability to Contamination: Providing Scientifically Defensible Information for Decision Makers, U.S. Geological Survey Circular 1224, U.S. Department of the Interior and U.S. Geological Survey, Reston, Virginia, USA
41. Foster, S., 1998, Groundwater recharge and pollution vulnerability of British aquifer: A critical review, In: N.S. Robins (ed.), Groundwater Pollution, Aquifer Recharge and Vulnerability, Geological Society of London, London, p. 7-22
42. Foster, S. and Hirata, R., 1988, Groundwater pollution risk assessment-A methodology using available data, Pan-American Center for Sanitary Engineering and Environmental Sciences(CEPIS), Lima/Peru, p. 73
43. Foster, S., Hirata, R., Gomes, D., D'Elia, M., and Paris, M., 2002, Groundwater Quality Protection: A Guide for Water Utilities, Municipal Authorities and Environmental Agencies, The World Bank, Washington DC, p. 103
44. Gardner, K.K. and Vogel, R.M., 2005, Predicting groundwater nitrate concentration from landuse, Ground Water, 43(3), 343-352
45. Goldscheider, N., 2002, Hydrogeology and vulnerability of karst systems-examples from the Northern Alps and Swabian Alp, PhD thesis, University of karlsruhe, Karlsruhe, p. 229
46. Goldscheider, N., 2005, Karst groundwater vulnerability mapping: Application of a new method in the Swabian Alb, Germany, Hydrogeo. J., 13(4), 555-564
47. Gogu, R.C. and Dassargues, A., 2000, Sensitivity analysis for the EPIK method of vulnerability assessment in a small karst aquifer, Southern Belgium, Hydrogeo. J., 8, 337-345
48. Gogu, R.C., Hallet, V., and Dassargues, A., 2003, Comparison of aquifer vulnerability assessment techniques, Application to the Neblon river basin (Belgium), Environ. Geology, 44(8), 881-892
49. Hamerlinck, J.D. and Ameson, C.S., 1998, Wyoming Ground Water Vulnerability Assessment Handbook-Spatial Data and Visulaization Report 98-01, University of Wyoming, Laramie, Wyoming, www.sdvc.uwyo.edu/groundwater/report.html
50. Helsel, D.R. and Hirsch, R.M., 1992, Statistical Methods in Water Resources. Elsevier Publishers, New York, p. 529
51. Hoelting, B., Haertle, T., Hohberger, K.H., Nachtigall, K.H., Villinger, E., Weinzierl, W., and Wrobel, J.P., 1995, Concept for the Determination of the Protective Effectiveness of the Cover above the Groundwater against Pollution, Ad-hoc Working Group on Hydrogeology, Hannover, p. 28
52. Holtschlag, D.J. and Luukkonen, C.L., 1997, Vulnerability of Ground Water to Atrazine Leaching in Kent County, Michigan, U.S. Geological Survey Water Resources Investigations Report 96-4198, Reston, USA, p. 49
53. Johansson, P.O., Scharp, C., Alveteg, T., and Choza, A., 1999, Framework for ground-water protection-the Managua Ground Water System as an example, Ground Water, 37(2), 204-213
54. Karnieli, A., Meisels, A., Fisher, L., and Arkin, Y., 1996, Automatic extraction and evaluation of geological linear features from digital remote sensing data using a Hough transform, Photo. Eng. Re. Sens., 62, 525-531
55. Kim, G.B., Lee, J.Y., and Lee, K.K., 2004a, Construction of lineament maps related to groundwater occurrence with ArcView and AvenueTM scripts, Comp. Geosci., 30, 1117-1126
56. Kim, G.B., Lee, J.Y., and Lee, K.K., 2004b, Application of representative elementary area (REA) to lineament density analysis for groundwater implication, Geosci. J., 8, 27-42
57. Kim, S.W., Won, J.S., Kim, W.K., and Min, K.D., 1999, Lineament analysis in the Euseong area using automatic lineament extraction algorithm, Econ. Environ. Geol., 32, 19-31
58. Kim, Y.J. and Hamm, S., 1999, Assessment of the potential for ground water contamination using the DRASTIC/EGIS technique, Cheongju area, South Korea, Hydrogeo. J., 7(2), 227-235
59. Koike, K., Nagano, S., and Ohmi, M., 1995, Lineament analysis of satellite images using a segment tracing algorithm (STA), Comp. Geosci., 21, 1091-1104
60. Kuisi, M.A., El-Naqa, A., and Hammouri, N., 2006, Vulnerability mapping of shallow groundwater aquifer using SINTACS model in the Jordan Valley area, Jordan, Environ. Geology, 50(5), 651-667
61. Laimer, H.J., 2005, Die Erfassung der Karstgrundwasser-Vulnerabilitat mit der Methode "VURAAS" (Karst groundwater vulnerability assessment with the "VURAAS" method), Grundwasser, 10(3), 167-176
62. Leal, J.A.R. and Castillo, R.R., 2003, Aquifer vulnerability mapping in the Turbio river valley, Mexico: A validation study, Geofisica Internacional, 42(1), 141-156
63. Lee, S., 2003, Evaluation of waste disposal site using the DRASTIC system in Southern Korea, Environ. Geology, 44(6), 654-664
64. Lynch, S.D., Reynders, A.G., and Schulze, R.E., 1997, A DRASTIC approach to ground water vulnerability in South Africa, S. African J. Sci., 93(2), 59-60
65. Mabee, S.B., Hardcastle, K.C., and Wise, D.U., 1994, A method of collecting and analyzing lineaments for regional-scale fractured-bedrock aquifer studies, Ground Water, 32, 884-894
66. Margane, A., 2003, Management, Protection and Sustainable Use of Groundwater and Soil Resources in the Arab Region-Volume 4-Guideline for Groundwater Vulnerability Mapping and Risk Assessment for the Susceptibility of Groundwater Resources to Contamination, Damascus
67. Margane, A., Hobler, M., and Subah, A., 1997, Groundwater Resources of Northern Jordan-Special Report No. 3: Mapping of Groundwater Vulnerability and Hazards to Groundwater in the Irbid Area, prepared by WAJ & BGR, Amman, p. 50
68. Marsico, A., Giuliano, G., Pennetta, L., and Vurro, M., 2004, Intrinsic vulnerability assessment of the south-eastern Murge (Apulia, southern Italy), Nat. Haz. E. Sys. Sci., 4, 769-774
69. Mato, R.R.A.M., 2004, Modeling and mapping groundwater protection priorities using GIS: the case of Dar es Salaam city, Tanzania, In: Groundwater Vulnerability Assessment and Mapping, Abstracts, International Conference, Usrtron, Poland, p. 100
70. Mato, R.R.A.M., 2007, Modeling and mapping groundwater protection priorities using GIS: the case of Dar Es Salaam city, Tanzania, In: Witkowski et al. (ed.), Groundwater Vulnerability Assessment and Mapping, Taylor and Francis, London, p. 155-166
71. Melloul, M. and Collin, M., 1998, A proposed index for aquifer water-quality assessment: the case of Israel's Sharon region, J. Environ. Manage., 54(2), 131-142
72. Nolan, B.T., Hitt, K.J., and Ruddy, B.C., 2002, Probability of nitrate contamination of recently recharged groundwaters in the conterminous United States, Environ. Sci. Tech., 36(10), 2138-2145
73. Nolan, B.T., Ruddy, B.C., Hitt, K.J., and Helsel, D.R., 1997, Risk of nitrate in groundwaters of the United States-a national perspective, Environ. Sci. Tech., 31(8), 2229-2236
74. Park, Y.J., Lee, K.K., and Kim, J.M., 2000, Effects of highly permeable geological discontinuities upon groundwater productivity and well yield, Math. Geology, 32, 605-618
75. Rao, P.S.C. and Alley, W.M., 1993, Pesticides, In W.M. Alley (ed.), Regional Groundwater Quality, Van Nostrand Reinhold, New York, NY, p. 345-377
76. Rupert, M.G., 2001, Calibration of the DRASTIC groundwater vulnerability mapping method, Ground Water, 39(4), 625-630
77. Ryker, S.J., 2001, Mapping arsenic in ground water-A real need, but a hard problem, Geo. News. E. Sci., 46(11), 34-36
78. SAEFL (Swiss Agency for the Environment, Forest and Landscape), 2000, Practical guide groundwater vulnerability mapping in karst regions (EPIK), Bern, p. 57
79. Sami, K., 1996, Evaluation of the variations in borehole yield from a fractured Karoo aquifer, South Africa, Ground Water, 34, 114-120
80. Shelton, J.L., Burro, K.R., Belitz, K., Dubrovsky, N.M., Land, M., and Gronberg, J., 2001, Low-level Volatile Organic Compounds in Active Public Supply Wells as Groundwater Tracers in the Los Angeles Physiographic Basin, California, 2000, U.S. Geological Survey Water Resources Investigation Report 01-4188, Sacramento, CA, USA
81. Shukla, S., Mostaghimi, S., Shanholt, V.O., Collins, M.C., and Ross, B.B., 2000, A county-level assessment of ground water contamination by pesticides, Ground Water Moni. R., 20(1), 104-119
82. Sidle, W.C. and Lee, P.Y., 1995, Estimating local ground water flow conditions in a granitoid: preliminary assessments in the Waldoboro pluton complex, Maine, Ground Water, 33, 291-302
83. Simsek, C., Gemici, U., and Filiz, S., 2008, An assessment of surficial aquifer vulnerability and groundwater pollution from a hazardous landfill site, Torbali/Turkey, Geosci. J., 12(1), 69-82
84. Sinclair, A.J., 1974, Selection of threshold values in geochemical data using probability graphs, J. Geochem. Explor., 3, 129-149
85. Snyder, D.T., Wilkinson, J.M., and Orzol, L.L., 1998, Use of a Ground-water Flow Model with Particle Tracking to Evaluate Ground-water Vulnerability, Clart County, Washington, U.S. Geological Survey Water-Supply Paper 2488, p. 63
86. Tobin, J., 1958, Estimation of relationships for limited dependent variables, Econometrica, 26(1), 24-36
87. van Stempvoort, D., Everet, L., and Wassenaar, L., 1993, Aquifer vulnerability index: a GIS compatible method for groundwater vulnerability mapping, Canadian Water Res. J., 18, 25-37
88. Vias, J.M., Andreo, B., Perles, M.J., and Carrasco, F., 2005, A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under mediterranean climatic conditions, Environ. Geology, 47(4), 586-595
89. Vias, J.M., Andreo, B., Perles, M.J., Carrasco, F., Vadillo, I., and Jimenez, P., 2002, Preliminary proposal of a method for contamination vulnerability mapping in carbonate aquifers, In: Karst and Environ., p. 75-83
90. Vias, J.M., Andreo, B., Perles, M.J., Carrasco, F., Vadillo, I., and Jimenez, P., 2006, Proposed method for groundwater vulnerability mapping in carbonate (karst aquifers): the COP method, Application in two pilot sites in Southern Spain, Hydrogeo. J., 14(6), 912-925
91. Voigt, H.J., Heinkele, T., Jahnke, C., and Wolter, R., 2004, Characterization of groundwater vulnerability to fulfill requirements of the water framework directive of the European Union, Geofisica Internacional, 43(4), 567-574
92. Vrba, J. and Zaporozec, A., 1994, Guidebook on Mapping Groundwater Vulnerability; IAH International Contribution to Hydrogeology, v.16, Hannover: Heise Verlag
93. Welch, A.H., Westjohn, D.B., Helsel, D.R., and Wanty, R.B., 2000, Arsenic in ground water of the United States-Occurrence and geochemistry, Ground Water, 38(4), 589