• Development of new integrated particle tracking techniques combining the numerical method, semi-analytical method, and analytical method
  • Suk, Hee-Jun;
  • Korea Institute of Geoscience and Mineral Resources;
  • 수치, 해석적, 준 해석적 및 해석적 방법을 통합한 새로운 입자추적기술 개발
  • 석희준;
  • 한국지질자원연구원;
References
  • 1. 석희준, 2006, 효율적인 수치 모델링 기법 개발을 위한 ELLAM과 LEZOOMPC의 비교분석, 한국지하수토양환경학회지, 11(1), 37-44
  •  
  • 2. Baptista, A.M., Adams, E., and Stolzenbach, K., 1984, Eulerian-Lagrangian analysis of pollutant transport in shallow water, Rep. 296, R.M. Parsons Lab. for Water Resour. and Hydrodyn., Mass. Inst. of Technol., Cambridge
  •  
  • 3. Baptista, A.M., 1987, Solution of advection-dominated transport by Eulerian-Lagrangian methods using the backward methods of characteristics, Ph.D. thesis, Dep. of Civ. Eng., Mass. Inst. of Technol., Cambridge
  •  
  • 4. Bear, J., 1979, Hydraulics of groundwater, New York: McGraw-Hill, p. 567
  •  
  • 5. Bensabat, J., Zhou, Q., and Bear, J., 2000, An adaptive path linebased particle tracking algorithm for the Eulerian-Lagrangian method, Advances in Water Resources, 23(4), 383-397
  •  
  • 6. Celia, M.A., Russell, T.F., Herrera, I., and Ewing, R.E., 1990, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Adv. Water Resour., 13, 187-206
  •  
  • 7. Cheng, H.P., Cheng, J.R., and Yeh, G.T., 1996, A particle tracking technique for the Lagrangian Eulerian finite element method in multi-dimensions, International Journal for Numerical Methods in Engineering, 39, 1115-1136
  •  
  • 8. Douglas, J. and Russell, T.F., 1982, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19, 871-885
  •  
  • 9. Goode, D.J., 1990, Particle velocity interpolation in block-centered finite difference groundwater flow models, Water Resources Research, 26(5), 925-940
  •  
  • 10. Healy, R.W. and Russell, T.F., 1998, Solution of the advectiondispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method, Adv. Water Resour., 21(1), 11-26
  •  
  • 11. Konikow, L.F., Goode, D.J., and Hornberger, G.Z., 1996, A three-dimensional model of characteristics solute-transport model (MOC3D), U.S. Geological Survey, Water Resources Investigation, Report 96-4267, p. 99
  •  
  • 12. Leonard, B.P., 1988, Universal limiter for transient interpolation modeling of advective transport equations: The ULTIMATE conservative difference scheme, NASA Tech. Memo. 100916
  •  
  • 13. Leonard, B.P. and Mokhtari, S., 1990, Beyond first-order unwinding: The ULTRA-SHARP alternative for non-oscillatory steady-state simulation of convection, Int. J. Numer. Methods Eng., 30, 729-866
  •  
  • 14. Lu, N., 1994, A semianalytical method of path line computation for transient finite difference groundwater flow models, Water Resources Research, 30(8), 2449-2459
  •  
  • 15. Oliveira, A. and Baptista, A.M., 1998, On the role of tracking on Eulerian-Lgrangian solutions of the transport equation, Advances in Water Resources, 21(7), 539-554
  •  
  • 16. Pokrajac, D. and Lazic, R., 2002, An efficient algorithm for high accuracy particle tracking in finite elements, Advances in Water Resources, 25(4), 353-369
  •  
  • 17. Pollock, D.W., 1988, Semianalytical computation of path lines for finite-difference models, Ground Water, 26(6), 743-750
  •  
  • 18. Pollock, D.W., 1994, User's guide for MODPATH/MODPATHPLOT, Version 3: a particle tracking post-processing package for MODFLOW. The US Geological Survey finite-difference ground-water flow models, US Geological Survey Open-File Report 94-464, p. 249
  •  
  • 19. Russell, T.F., 1990, Eulerian-Lagrangian localized adjoint methods for advection-dominated problems. In Numerical Analysis, 1989, Pitman Res. Notes Math, Series, Vol. 228, ed. D.F. Griffiths & G.A. Watson. Longman Scientific and Technical, Harlow, U.K., 206-228
  •  
  • 20. Suk, H. and Yeh, G.T., 2007, 3D, three-phase flow simulations using the Lagrangian-Eulerian approach with adaptively zooming and peak/valley capturing scheme, Journal of Hydrologic Engineering, ASCE, 12(1), 14-32
  •  
  • 21. Suk, H. and Yeh, G.T., 2008, A multi-dimensional finite element particle tracking method for solving complex transient flow problem, in press Journal of Hydrologic Engineering
  •  
  • 22. Williamson, D.L. and Rasch, P.J., 1988, Two-dimensional semi-Lagrangian transport with shape preserving interpolation, Mon. Weather Rev., 117, 102-109
  •  
  • 23. Yeh, G.T., 1990, A Lagrangian-Eulerian method with zoomable hidden fine-mesh approach to solving advection-dispersion equations, Water Resour. Res., 26(6), 1133-1144
  •  
  • 24. Yeh, G.T., Cheng, J.R., Gwo, J.P., Lin, H.C., Richards, D.R., and Martin, W.D., 1992, 3DFEMWATER/3DLEWASTE Numerical code for delineating wellhead protection areas in agricultural regions based on the assimilative capacity criterion, U.S. Environmental Protection Agency, EPA/600/R-92/223, p. 256
  •  
  • 25. Zheng, C., 1990, MT3D user's manual: a modular three-dimensional transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems, S.S. Papadopulos and Associates, p. 163
  •  

This Article

  • 2008; 13(6): 50-61

    Published on Dec 31, 2008

Correspondence to

  • E-mail: