Development of Analytical Methods for Micro Levels of Naphthalene and TNT in Groundwater by HPLC-FLD and MSD
Park, Jong-Sung;Oh, Je-Ill;Jeong, Sang-Jo;Choi, Yoon-Dae;Her, Nam-Guk;
Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon;Department of Civil and Environmental Engineering, Chung-Ang University;Department of Civil Engineering and Environmental Sciences, Korea Military Academy;Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon;Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon;
1. 국가지하수정보센터, GiMS, National Groundwater Information Management and Service Center, www.gims.go.kr
2. 조정현, 배범한, 김계훈, 2008, 토양중 화학물질 HPLC 분석방법국내 표준제안 개발, 2008년 한국지하수토양환경학회 추계학술발표회, 포항공과대학교, p. 90-91
3. 박석효, 배범한, 김민경, 장윤영, 2008, 국내 소규모 군사격장 복합오염물질(화약물질 및 중금속)의 분포 및 거동, 한국물환경학회, 24, 523-532
4. 배범한, 조정현, 2009, 화약물질 현장검출시약 EXPRAY를 이용한 토양내 화약물질 스크리닝 및 준정량화 가능성, 한국지하수토양환경학회, 14(2), 45-53
5. ACS committee on Environmental improvement and subcommittee on environmental analytical chemistry, 1980, Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry, Anal. Chem., 52, 2242-2249
6. ATSDR, 2005, Toxicological profile for Naphthalene, 1-Methylnaphthalene, and 2- Methylnaphthalene, U.S. Department Of Health And Human Services Public Health Service
7. Brannon, J.M., Jenkins, T.F., Parker, L.V., Deliman, P., Gerald, J.A., Ruiz, C., Porter, B., and Davis, W.M., 2000, Procedures for determining integrity of UXO and explosives soil contamination at firing ranges. U. S. Army Corps of Engineers. ERDC TR-00-4
8. Coopera, W.J., Nickelsena, M.G., Greenb, R.V., and Mezykc, S.P., 2002, The removal of naphthalene from aqueous solutions using high-energy electron beam irradiation, Radiation Physics and Chemistry, 65, 571-577
9. EC-JRC, 2003, European Chemicals Bureau. European Union Risk Assessment Report, naphthalene, European Commission Joint Research Centre, EUR 20763 EN, 1st priority List, (33)
10. Gaurav, V.K., Kumar, A., Malik, A.K., Rai, P.K., 2007, SPMEHPLC:A new approach to the analysis and of explosives, J. Hazard. Mater., 147, 691-697
11. Goela, R.K., Floraa, J.R.V., and Ferryb, J., 2003, Mechanisms for naphthalene removal during electrolytic aeration, Water Research, 37, 891-901
12. Hykrdov$\acute{a}$, L., Jirkovsk$\acute{y}$, J., Mailhot, G., and Bolte, M., 2002, Fe(III) photo induced and Q-$TiO_2$ photocatalysed degradation of naphthalene: comparison of kinetics and proposal of mechanism, Journal of Photochemistry and Photobiology A: Chemistry, 151, 181-193
13. Halasz, A., Groom, C., Zhou, E., Paquet, L., Beaulieu, C., Deschamps, S., Corriveau, A., Thiboutot, S., Ampleman, G., Dubois, C., and Hawari, J., 2002, Detection of explosives and their degradation products in soil environments, J. Chromatogr. A, 963, 411-418
14. Harvey S.D., Fellows, R.J., Cataldo, D.A., and Bean R.M., 1990, Analysis of 2,4,6-trinitrotoluene and its transformation products in soils and plant tissues by high-performance liquid chromatography, J. Chromatogr. A, 518, 361-374
15. Jenkins, T.F., Pennington, J.C., Ranney, T.A., Berry, T.E., Miyares, P.H., Walsh, M.E., Hewitt, A.D., Perron, N.M., Parker, L.V., Hayes, C.A., and Wahlgren, E.G., 2001, Characterization of Explosives Contamination at Military Firing Range, Tech Rep. ERDC TR-01-5, USACE Engineering Research and Development Center, Vicksburg. MS
16. Leeson, A. and Hatzinger, P., 2007, DOD's Perspective on Development of Innovative Approaches for Treatment of Emerging Contaminants, 17th Annual Training Conference 2007 National Association of Remedial Project Managers, Baltimore, Maryland
17. Marple, R.L. and Lacourse, W.R., 2005, A platform for on-site Environmental analysis of explosives using performance liquid chromatography with UV absorbance and photo-assisted electrochemical detection, Talanta, 66, 581-590
18. Maillacheruvu, K. and Safaai S., 2002, Naphthalene removal from aqueous systems by sagittarius sp., J. Environ. Sci. Health, 37(5), 845-861
19. Psillakis, E., Goula, G., Kalogerakis, N., and Mantzavinos, D., 2004, Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation, J. Hazard. Mater., 108, 95-102
20. Palazzo, A.J. and Leggett, D.C, 1986, Effect and Disposition of TNT in a Terrestrial Plant, J. Environ. Qual., 15, 49-52
21. Ribani, M., Collins, C.H., and Bottoli, C.B.G., 2007, Validation of chromatographic methods: Evaluation of detection and quantification limits in the determination of impurities in omeprazole, J. Chromatogr. A, 1156, 201-205
22. Vasilyeva, G.K., Kreslavski, V.D., and Shea, P.J., 2002, Catalytic oxidation of TNT by activated carbon. Chemos. 47, 311-317
23. U.S. EPA, 2004, 2004 Edition of the Drinking Water Standards and Health Advisories, EPA 822-R-04-005, Office of Water U.S. Environmental Protection Agency Washington, DC