• Development of Analytical Methods for Micro Levels of Naphthalene and TNT in Groundwater by HPLC-FLD and MSD
  • Park, Jong-Sung;Oh, Je-Ill;Jeong, Sang-Jo;Choi, Yoon-Dae;Her, Nam-Guk;
  • Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon;Department of Civil and Environmental Engineering, Chung-Ang University;Department of Civil Engineering and Environmental Sciences, Korea Military Academy;Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon;Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon;
  • HPLC-FLD와 MSD를 이용한 지하수 중 나프탈렌 및 TNT의 미량 분석법 개발
  • 박종성;오재일;정상조;최윤대;허남국;
  • 육군3사관학교 화학환경과학과;중앙대학교 건설환경공학과;육군사관학교 토목환경학과;육군3사관학교 화학환경과학과;육군3사관학교 화학환경과학과;
References
  • 1. 국가지하수정보센터, GiMS, National Groundwater Information Management and Service Center, www.gims.go.kr
  •  
  • 2. 조정현, 배범한, 김계훈, 2008, 토양중 화학물질 HPLC 분석방법국내 표준제안 개발, 2008년 한국지하수토양환경학회 추계학술발표회, 포항공과대학교, p. 90-91
  •  
  • 3. 박석효, 배범한, 김민경, 장윤영, 2008, 국내 소규모 군사격장 복합오염물질(화약물질 및 중금속)의 분포 및 거동, 한국물환경학회, 24, 523-532
  •  
  • 4. 배범한, 조정현, 2009, 화약물질 현장검출시약 EXPRAY를 이용한 토양내 화약물질 스크리닝 및 준정량화 가능성, 한국지하수토양환경학회, 14(2), 45-53
  •  
  • 5. ACS committee on Environmental improvement and subcommittee on environmental analytical chemistry, 1980, Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry, Anal. Chem., 52, 2242-2249
  •  
  • 6. ATSDR, 2005, Toxicological profile for Naphthalene, 1-Methylnaphthalene, and 2- Methylnaphthalene, U.S. Department Of Health And Human Services Public Health Service
  •  
  • 7. Brannon, J.M., Jenkins, T.F., Parker, L.V., Deliman, P., Gerald, J.A., Ruiz, C., Porter, B., and Davis, W.M., 2000, Procedures for determining integrity of UXO and explosives soil contamination at firing ranges. U. S. Army Corps of Engineers. ERDC TR-00-4
  •  
  • 8. Coopera, W.J., Nickelsena, M.G., Greenb, R.V., and Mezykc, S.P., 2002, The removal of naphthalene from aqueous solutions using high-energy electron beam irradiation, Radiation Physics and Chemistry, 65, 571-577
  •  
  • 9. EC-JRC, 2003, European Chemicals Bureau. European Union Risk Assessment Report, naphthalene, European Commission Joint Research Centre, EUR 20763 EN, 1st priority List, (33)
  •  
  • 10. Gaurav, V.K., Kumar, A., Malik, A.K., Rai, P.K., 2007, SPMEHPLC:A new approach to the analysis and of explosives, J. Hazard. Mater., 147, 691-697
  •  
  • 11. Goela, R.K., Floraa, J.R.V., and Ferryb, J., 2003, Mechanisms for naphthalene removal during electrolytic aeration, Water Research, 37, 891-901
  •  
  • 12. Hykrdov$\acute{a}$, L., Jirkovsk$\acute{y}$, J., Mailhot, G., and Bolte, M., 2002, Fe(III) photo induced and Q-$TiO_2$ photocatalysed degradation of naphthalene: comparison of kinetics and proposal of mechanism, Journal of Photochemistry and Photobiology A: Chemistry, 151, 181-193
  •  
  • 13. Halasz, A., Groom, C., Zhou, E., Paquet, L., Beaulieu, C., Deschamps, S., Corriveau, A., Thiboutot, S., Ampleman, G., Dubois, C., and Hawari, J., 2002, Detection of explosives and their degradation products in soil environments, J. Chromatogr. A, 963, 411-418
  •  
  • 14. Harvey S.D., Fellows, R.J., Cataldo, D.A., and Bean R.M., 1990, Analysis of 2,4,6-trinitrotoluene and its transformation products in soils and plant tissues by high-performance liquid chromatography, J. Chromatogr. A, 518, 361-374
  •  
  • 15. Jenkins, T.F., Pennington, J.C., Ranney, T.A., Berry, T.E., Miyares, P.H., Walsh, M.E., Hewitt, A.D., Perron, N.M., Parker, L.V., Hayes, C.A., and Wahlgren, E.G., 2001, Characterization of Explosives Contamination at Military Firing Range, Tech Rep. ERDC TR-01-5, USACE Engineering Research and Development Center, Vicksburg. MS
  •  
  • 16. Leeson, A. and Hatzinger, P., 2007, DOD's Perspective on Development of Innovative Approaches for Treatment of Emerging Contaminants, 17th Annual Training Conference 2007 National Association of Remedial Project Managers, Baltimore, Maryland
  •  
  • 17. Marple, R.L. and Lacourse, W.R., 2005, A platform for on-site Environmental analysis of explosives using performance liquid chromatography with UV absorbance and photo-assisted electrochemical detection, Talanta, 66, 581-590
  •  
  • 18. Maillacheruvu, K. and Safaai S., 2002, Naphthalene removal from aqueous systems by sagittarius sp., J. Environ. Sci. Health, 37(5), 845-861
  •  
  • 19. Psillakis, E., Goula, G., Kalogerakis, N., and Mantzavinos, D., 2004, Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation, J. Hazard. Mater., 108, 95-102
  •  
  • 20. Palazzo, A.J. and Leggett, D.C, 1986, Effect and Disposition of TNT in a Terrestrial Plant, J. Environ. Qual., 15, 49-52
  •  
  • 21. Ribani, M., Collins, C.H., and Bottoli, C.B.G., 2007, Validation of chromatographic methods: Evaluation of detection and quantification limits in the determination of impurities in omeprazole, J. Chromatogr. A, 1156, 201-205
  •  
  • 22. Vasilyeva, G.K., Kreslavski, V.D., and Shea, P.J., 2002, Catalytic oxidation of TNT by activated carbon. Chemos. 47, 311-317
  •  
  • 23. U.S. EPA, 2004, 2004 Edition of the Drinking Water Standards and Health Advisories, EPA 822-R-04-005, Office of Water U.S. Environmental Protection Agency Washington, DC
  •  

This Article

  • 2009; 14(6): 35-44

    Published on Dec 31, 2009

  • Received on Aug 19, 2009
  • Revised on Aug 26, 2009
  • Accepted on Oct 5, 2009

Correspondence to

  • E-mail: