• Model Development on the Fate and Transport of Chemical Species in Marsh Wetland Sediments Considering the Effects of Plants and Tides
  • Park, Do-Hyun;Wang, Soo-Kyun;
  • Department of Energy Resources Engineering, Pukyong National University;Department of Energy Resources Engineering, Pukyong National University;
  • 식생과 조석의 영향을 고려한 연안습지 퇴적물 내 물질거동 모형의 개발
  • 박도현;왕수균;
  • 부경대학교 에너지자원공학과;부경대학교 에너지자원공학과;
References
  • 1. Armstrong, W., 1979, Aeration in higher plants. Adv. Bot. Res., 7, 225-232
  •  
  • 2. Bartlett, R.J., 1991, Chromium cycling in soils and water: links, gaps, and methods. Environ. Health Perspect., 92, 17-24
  •  
  • 3. Bedford, B.L., Bouldin, D.R., and Beliveau, B.D., 1991, Net oxygen and carbon-dioxide balances in solutions bathing roots of wetland plants, J. Ecol., 79, 943-959
  •  
  • 4. Brix, H., Sorrell, B.K., and Schierup, H.H., 1996, Gas fluxes achieved by in situ convective flow in Phragmites australis, Aquat. Bot., 54, 151-163
  •  
  • 5. Choi, J.H., Park, S.S., and Jaffe, P.R., 2006, Simulating the dynamics of sulfur species and zinc in wetland sediments, Ecol. Model., 199, 315-323
  •  
  • 6. DiToro, D.M., 2001, Sediment Flux Modeling, John Wiley & Sons, Inc., Hoboken, NJ, p.656
  •  
  • 7. Fendorf, S.E. and Li, G., 1996, Kinetic of chromate reduction by ferrous iron, Environ. Sci. Technol., 30, 1614-1617
  •  
  • 8. Fendorf, S.E., Li, G., and Gunter, M.E., 1996, Micromorphologies and stabilities of chromium(III) surface precipitates elucidated by scanning force microscopy, Soil Sci. Soc. Am. J., 60, 99-106
  •  
  • 9. Grosse, W., 1997, Gas transport in trees, In: H. Tenneverg, W. Eschrich, and H. Ziegler (eds.), Contributions to Modern Tree Physiology, Backhuys Publishers, Leiden, 57-74
  •  
  • 10. Jaffe, P.R., Wang, S., Kallin, P.L. and Smith L.S., 2002, The dynamics of arsenic in saturated porous media: fate and transport modeling for deep aquatic sediments, wetland sediments, and groundwater environments, In: R. Hellmann and S.A. Wood (eds.), Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: A Tribute to David A. Crerar, Geochemical Society, St. Louis, 379-397
  •  
  • 11. Katz, S.A. and Salem, H., 1993, The toxicology of chromium with respect to its chemical speciation: a review, J. Appl. Toxicol., 13, 217-224
  •  
  • 12. Ok, Y.S., Jung, J., Lee, H., Song, H., Jung, N., Lim, S., and Kim, J.G., 2004, Chemical characterization and bioavailability of cadmium in artificially and naturally contaminated soils, Agr. Chem. Biotechnol., 47, 143-146
  •  
  • 13. Sand-Jensen, K., Prahl, C., and Stokholm, H., 1982, Oxygen release from roots of submerged aquatic macrophytes, Oikos, 38, 349-354
  •  
  • 14. Vanishtein, M., Kuschk, P., Mattusch, J., Vatsourina, A., and Wiessner, A., 2003, Model experiments on the microbial removal of chromium from contaminated groundwater, Water Res., 37, 1401-1405
  •  

This Article

  • 2009; 14(6): 53-64

    Published on Dec 31, 2009

  • Received on Oct 7, 2009
  • Revised on Oct 21, 2009
  • Accepted on Nov 30, 2009

Correspondence to

  • E-mail: