A Study on Transport Characteristics of CMC-modified Zero Valent Iron (ZVI) Nanoparticles in Porous Media
Cho, Yun-Chul;Choi, Sang-Il;
Department of Environmental Engineering, Kwangwoon University;Department of Environmental Engineering, Kwangwoon University;
다공성 매질내에서 CMC로 표면개질된 영가철 나노입자의 이동 특성에 관한 연구
조윤철;최상일;
광운대학교 환경공학과;광운대학교 환경공학과;
References
1. Baalousha, M., Manciulea, A., Cumberland, S., Kendall, K., and Lead, J.R., 2008, Aggregation and surface properties of iron oxide nanoparticles: Influence of pH and natural organic matter. Environmental Toxicology and Chemistry, 27, 1875-1882
2. He, F. and Zhao, D., 2005, Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science and Technology, 39, 3314-3320
3. He, F. and Zhao, D., 2007, Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science and Technology, 41, 6216-6221
4. He, F., Zhao, D., Liu, J., and Roberts, C.B., 2007, Stabilization of Fe - Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial and Engineering Chemistry Research, 46, 29-34
5. He, F. and Zhao, D., 2008, Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles: Reaction mechanism and effects of stabilizers, catalysts and reaction conditions. Applied Catalysis B: Environmental, 84, 533-540
6. He, F., Zhang, M., Qian, T., and Zhao, D., 2009, Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. Journal of Colloid and Interface Science, 334, 96-102
7. Johnson, R.L., Johnson, G.O'B., Nurmi, J.T., and Tratnyek, P.G., 2009, Natural Organic Matter Enhanced Mobility of Nano Zerovalent Iron. Environmental Science and Technology, 43(14), 5455-5460
8. Kanel, S.R., Nepal, D., Manning, B., and Choi, H., 2007, Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. Journal of Nanoparticle Research, 9, 725-735
9. Liu, Tongzhou, Rao, Pinhua, Mak, Mark S.H., Wang, Peng, and Lo, Irene M.C., 2009, Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate. Water Research, 43, 9, 2540-2548
10. Nurmi, J.T., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Penn, R.L., and Driessen, M.D., 2005, Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environmental Science and Technology, 39, 221-1230
11. Saleh, N., Kim, H.J., Phenrat, T., Matyjaszewski, K., Tilton, R.D., and Lowry, G.V., 2008, Ionic strength and composition affect the mobility of surface-modified $Fe^0$ nanoparticles in water-saturated sand columns. Environmental Science and Technology, 42, 3349-3355
12. Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R.D., and Lowry, G.V., 2005, Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5, 2489-2494
13. Schrick, B., Hydutsky, B.W., Blough, J.L., and Mallouk, T.E., 2004, Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16, 2187-2193
14. Sirk, Kevin M., Saleh, Navid B., Phenrat, Tanapon, Kim, Hye-Jin, Dufour, Bruno, Ok, Jeongbin, Golas, Patricia L., Matyjaszewski, Krzysztof, Lowry, Gregory V., and Tilton, Robert D., 2009, Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models, Environmental Science and Technology, 43(10), 3803-3808
15. Weng, Liping, Fest, Ellen P.M.J., Fillius, Jeroen, Temminghoff, Erwin J.M., and Van, Willem H., 2002, Transport of Humic and Fulvic Acids in Relation to Metal Mobility in a Copper-Contaminated Acid Sandy Soil. Environmental Science and Technology, 36(8), 1699-1704
16. Zhang, L. and A. Manthiram (1997) Chains composed of nanosize metal particles and identifying the factors driving their formation. Appl. Phys. Lett., 70(18), 2469-2471