5. 박소영, 성기준, 2007, 실내포름알데히드 농도에 미치는 식물의 영향, 한국환경과학회지, 16(2), 197-202.
6. 성기준, 2005, Phytoremediation as an innovative technology for multimedia remediation and restoration, 지하수관리기술 워크샵, 강원대학교, p. 44-65.
7. 옥영식, 김정규, 양재의, 김휘중, 유경영, 박창진, 정덕영, 2004, 중금속 오염토양의 식물정화 기술과 형질전환 식물의 이용에 관한 연구, 한국토양비료학회지, 37(6), 396-406.
8. 환경부, 2002, 토양오염공정시험방법.
9. 환경부, 2007, 오염토양 정화방법 가이드라인, p. 228.
10. 해양수산부, 2005, 해양환경공정시험방법.
11. Aiken, G.R., Mcknight, D.M., and Wershaw, R.L., 1985, Humic Substances in Soil, Sediments, Water, John Wiley & Sons. Inc., p. 457-476.
12. Athar, R. and Ahmad, M., 2002, Heavy metal toxicity: Effect on plant growth and metal uptake by wheat, and on free living azotobacter, Water Air and Soil Pollution, 138, 165-180.
13. Bio Ag Technologies International, 1999, Humic acid structure and properties, p. 1-12.
14. Chen, Y. and Aviad, T., 1990, Effects of humic substances on plant growth, Soil. Sci. Soc., Madison, Wisconsin, USA, p. 161-186.
15. Kumar, D., Shivay, Y.S., 2008, Definitional glossary of agricultural terms, Vol. 1, I K International Publishing House, p. 49-50.
16. Gadd, G.M. and Griffiths, A.J., 1978, Microorganisms and heavy metal toxicity, Microbial Ecology, 4, 303-317.
17. Gatliff, E.G., 1994, Vegetative remediation process offers advantages over traditional pump-and-treat technologies, Remediation, Summer, 343-352.
18. Interstate Technology and Regulatory Cooperation Work Group, 2001 Technical/regulatory guideline: Phytotechnology technical and regulatory guidance document. p. 84.
19. Johnson, C.M., Stout, P.R., Broyer, T.C., and Carlton, A.B., 1957, Comparative chlorine requirements of different plant species, Plant and Soil, 13(4), 337-353.
20. Macek, T., Mackova, M., and Kas, J., 2000, Exploitation of plants for the removal of organics in environmental remediation, Biotechnology advances, 18, 23-34.
21. Miller, R.R., Phytoremediation, 1996, Groundwater Remediation Technologies Analysis Center, PA. USA.
22. Preston, C.M., Dudley, R.L., Fyfe, C.A., and Mathus, S.P., 1984, Effects of variations in contact times and copper contents in a $^{13}C$ CPMAS NMR study of samples of four organic soils, Geoderma, 33, 245-253.
23. Schnoor, J.L., Light, L.A., McCutcheon, S.C., Wolfe, N.L., and Carreira, L.H., 1995, Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol. 29(7), 318-323.
28. Stevenson, F.J., 1994. Humic chemistry: Genesis, Composition, Reactions. John Wiley and Sons, New York.
29. US EPA, 1999a, Phytoremediation resource guide, EPA 542-B-99-003.
30. US EPA, 1999b, Phytoremediation Resources Guide, EPA 542-B-99-003.
31. US EPA 2000, Introduction of phytoremediation, EPA/600/R-99/107.
32. US EPA 2001, Phytoremediation of contaminated soil and ground water at hazardous waste sites, EPA/540/S-01/500.
33. Volk, B.G. and Schnitzer, M., 1973, Chemical and spectroscopic methods for assessing subsidence in Florida Histosols, Soil Sci. Soc. Am. Proc., 37, 886-888.
34. Watkins, C.H. and Hammerschlag, R.S., 2003, The toxicity of chlorine to a common vascular aquatic plant, Water Research, 18(8), 1037-1043.
35. Weis, J.S., Glover, T., and Weis, P., 2004, Interactions of metals affect their distribution in tissues of Phragmites australis, Environ. Poll., 131, 409-415.
36. Zelazny, L.W. and Carlisle, V.W., 1974, Physical, chemical, elemental, and oxygen-containing functional group analysis of selected Florida Histosols, SSSA Spec. Publ., 6, p. 63-78.