• Simultaneous Removal of Heavy Metals and Diesel-fuel from a Soil Column by Surfactant Foam Flushing
  • Heo, Jung-Hyun;Jeong, Seung-Woo;
  • Department of Environmental Engineering, Kunsan National University;Department of Environmental Engineering, Kunsan National University;
  • 계면활성제 거품(Foam)을 이용한 토양칼럼 내 유류 및 중금속 동시 제거 연구
  • 허정현;정승우;
  • 군산대학교 환경공학과;군산대학교 환경공학과;
References
  • 1. 김수삼, 김병일, 한상재, 김정환, 2003, 납으로 오염된 철성분 함유토의 동전기 정화 특성에 세척제가 미치는 영향, 지하수토양환경, 9(1), 54-62.
  •  
  • 2. 김용식, 손영규, 김지형, 송지현, 2005, Toluene의 생물학적 분해능 향상을 위한 계면활성제의 선정, 지하수토양환경, 10(4), 26-32.
  •  
  • 3. 부산시, 2003, 문현지구 토양환경 복원사업의 성공적 성과사례-문현금융단지 오염부지 정화사업중심 연구보고서
  •  
  • 4. 이민희, 정상용, 최상일, 강동환, 김민철, 2002, 계면활성제 원위치 토양 세정법을 이용한 유류 오염 지역 토양. 지하수 정화 실증 시험, 지하수토양환경, 7(4), 77-86.
  •  
  • 5. 허정현, 정승우, 2008, NaI 리간드화 계면활성제에 의한 토양 내 Cd과 Pb 추출연구, 지하수토양환경, 13(5), 74-80.
  •  
  • 6. Chowdiah, P., Misra, B.R., Kilbane , J.J., Sivastava, V.J., and Hayes, T.D., 1998, Foam propagation through soils for enhanced in-situ remediation, Journal of hazardous materials, 62, 265-280.
  •  
  • 7. Chu, W. and Chan, K.H., 2003, The mechanism of the surfactant-aided soil washing system for hydrophobic and partial hydrophobic organics, The Science of the Total Environment, 307, 83-92.
  •  
  • 8. Huh, D.G., Cochrane, T.D., and Kovarik, F.S., 1989, The effect of microscopic heterogeneity on $CO_2$ foam mobility: part 1- mechanistic study. J. Pet. Technol. 41(8), 872-879.
  •  
  • 9. Jeong S-W. and Corapcioglu, M.Y., 2003, A micromodel analysis of factors influencing NAPL removal by surfactant foam flooding, Jour. Contam. Hydrol. 60, 77-96.
  •  
  • 10. Jeong, S-W. and Corapcioglu, M.Y., 2005, Force analysis and visualization of NAPL removal during surfactant-related floods in a porous medium, Journal of Hazardous Materials, 126(1-3), 8-13.
  •  
  • 11. Mulligan. C.N. and Wang, S., 2006, Remediation of a heavy metal-contaminated soil by a rhamnolipid foam, Engineering Geology, 85, 75-81.
  •  
  • 12. Mulligan, C.N., Yong, R.N., and Gibbs, B.F., 2001, Surfactant-enhanced remediation of contaminated soil: a review, Engineering Geology, 60, 371-380.
  •  
  • 13. Owete, O.S. and Brigham, W.E., 1987, Flow behavior of foam porous micromodel study, SPE Reserv. Eng. 2(8), 315- 323.
  •  
  • 14. Shin, M., Barrington, S.F., Marshall, W.D., and Kim, J.W., 2005, Effect of surfactant alkyl chin length on soil cadmium desorption using surfactant/ligand systems, Chemosphere, 58, 735-742.
  •  
  • 15. SSSA, 2002, Methods of Soil Analysis, Soil Science Society of America, Inc., Wisconsin, USA.
  •  
  • 16. St-Pierre, C., Martel, R., Gabriel, U., Lefebvre, R., Robert, T., and Hawari, J., 2004, TCE recovery mechanisms using micellar and alcohol solutions: phase diagrams and sand column experiments, Journal of Contaminant Hydrology, 71, 155-192.
  •  
  • 17. Taylor, T.P, Rathfelder, K.M., Pennell, K.D., and Abriola, L.M., 2004, Effects of ethanol addition on micellar solubilization and plume migration during surfactant enhanced recovery of tetrachloroethene, Jour. Contam. Hydrol., 69(1-2), 73-99.
  •  
  • 18. USEPA, 1997, Recent Developments for In Situ Treatment of Metal Contaminated Soils, EPA/542/R97/004, Office of Solid Waste and Emergency Response, Washington DC.
  •  
  • 19. USEPA, 2001, Treatment Technologies for Site Cleanup: Annual Status Report, EPA/542/R01/004, Office of Solid Waste and Emergency Response, Washington DC.
  •  
  • 20. Wang, S. and Mulligan, C.N., 2004, Rhamnolipid Foam enhanced remediation of Cadmium and Nickel contaminated soil, Water, Air & Soil Pollut., 157, 315-330.
  •  
  • 21. Whitten, K.W. Davis, R.E., Peck, M.L., and Stanley, G.G., 2006, General Chemistry, Thomson Learning Inc.
  •  

This Article

Correspondence to

  • E-mail: