• Evaluation of Remediation Efficiency of In-Situ Chemical Oxidation Technology Applying Micro Bubble Ozone Oxidizer Coupled with Pneumatic Fracturing Equipment
  • Oh, Seung-Taek;Oh, Cham-Teut;Kim, Guk-Jin;Seok, So-Hee;Kim, Chul-Kyung;Lim, Jin-Hwan;Ryu, Jae-Bong;Chang, Yoon-Young;
  • OIKOS Co. Ltd.;OIKOS Co. Ltd.;OIKOS Co. Ltd.;Korea Railroad Corporation;Department of Advanced Chemical Engineering, Mokwon University;Department of Environmental Engineering, Kwangwoon University;Department of Environmental Engineering, Kwangwoon University;Department of Environmental Engineering, Kwangwoon University;
  • 마이크로버블 오존 산화제와 공압파쇄 장치를 연계 적용한 지중 화학적 산화법의 정화효율 평가
  • 오승택;오참뜻;김국진;석소희;김철경;임진환;유재봉;장윤영;
  • (주)오이코스;(주)오이코스;(주)오이코스;한국철도공사;목원대학교 신소재화학공학과;광운대학교 환경공학과;광운대학교 환경공학과;광운대학교 환경공학과;
References
  • 1. 권미선, 박은규, 이철효, 김용성, 김남진, 2010, 비포화대 오염정화 설계를 위한 공압파쇄 모사 해석, 지하수토양환경, 15(6), 53-63.
  •  
  • 2. 김종태, 정교철, 부성안, 김진성, 김혜빈, 2004, 공압파쇄를 이용한 지하수량 증가에 대한 연구, 지질공학회지, 14(2), 189-197.
  •  
  • 3. 이순화, 정계주, 권진하, 이세한, 2010, 잉여슬러지 가용화를 위한 마이크로버블 오존 이용에 관한 연구, 대한환경공학회지, 32(4), 325-332.
  •  
  • 4. 이인규, 이은영, 이혜정, 이기세, 2011, 마이크로버블 오존 고도 산화를 이용한 축산폐수 혐기소화 배출수의 COD와 색도의 제거, 공업화학, 22(6), 617-622.
  •  
  • 5. 정교철, 김기종, 부성안, 서용석, 2002, 공압파쇄를 고려한 단일 불연속면에서의 간극에 다른 투수성 변화에 대한 연구, 지질공학회지, 12(2), 151-166.
  •  
  • 6. Andreozzi, R., Insola, A., Caprio, V., and D'Amore, M.G., 1991, Ozonation of pyridine in aqueous solution: mechanistic and kinetic aspects, Wat. Res., 25, 655-659.
  •  
  • 7. Barid, N.C., 1997, Free radical reactions in aqueous solutions: examples from advanced oxidation processes for wastewater and from the chemistry in airborne water droplets, J. Chem. Edu., 74(7), 817-819.
  •  
  • 8. Beckett, G.D. and Huntley, D., 1994, Characterization of flow parameters controlling soil vapor extraction, Ground Wat., 32(2), 239-247.
  •  
  • 9. Duguet, J.P., Anselme, C., Mazounie, P., and Mallevialle, J., 1990, Application of combined ozone-hydrogen peroxide for the removal of aromatic compounds from a groundwater, Ozone: Sci. Eng.: J. Inter. Ozone Association, 12(3), 281-294.
  •  
  • 10. Frank, U. and Barkley, N., 1995, Remediation of low permeability subsurface formations by fracturing enhancement of soil vapor extraction, J. Hazard. Mater., 40, 191-201.
  •  
  • 11. Gulyas, H., Bismarck, R.V., and Hemmerling, L., 1995, Treatment of industrial waste waters with ozone/hydrogen peroxide, Wat. Sci. Tech., 32(7), 127-134.
  •  
  • 12. Hantush, M.S. and Jacob, C.E., 1955, Non-steady radial flow in an infinite leaky aquifer, Trans. Am. Geophys. Union, 36(1), 95-112.
  •  
  • 13. Hsu, I., 1995, The use of gaseous ozone to remediate the contaminants in the unsaturated soils, Ph. D. thesis, Michigan State Univ.
  •  
  • 14. ITRCWG(Interstate Technology and regulatory Cooperation Work Group), 2001, Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater, Technical/Regulatory Guidelines, In situ chemical oxidation work team, 25.
  •  
  • 15. Kong, S.H., Watts, R.J., and Choi, J.H., 1998, Treatment of peroleum contaminated soils using iron mineral catalyzed hydrogen peroxide, Chemosphere, 37(8), 1473-1482.
  •  
  • 16. Masten, S.J. and Davies, S.R., 1997, Efficacy of in-situ ozonation for the remediation of PAH contaminated soils, J. Contam. Hydrology, 28, 327-335.
  •  
  • 17. Masten, S.J., 1991, Use of insitu ozonation for the removal of VOCs and PAHs from unsaturated soils, in Proceedings of the symposium on soil venting, Houston, Texas, 29-53.
  •  
  • 18. Mitani, M.M., Keller, A.A., Bunton, C.A., Rinker, R.G., and Sandall O.C., 2002, Kinetics and products of reactions of MTBE with ozone and ozone/hydrogen peroxide in water, J. Hazard. Mater., B89, 197-212.
  •  
  • 19. Schuring, J.R., Chan, P.C., Liskowitz, J.W., Papanicolaou, P., and Bruening, C.T., 1991, Method and apparatus for eliminating non-naturally occurring subsurface liquid toxic contaminants from soil, U.S. Patent No. 5,032,042.
  •  
  • 20. Schuring, J.R., Kosson, D.S., Fitzgerald, C.D., and Venkatraman, S., 1996, Pneumatic fracturing and multicomponent injection enhancement of in situ bioremediation, U.S. Patent No. 5,560,737.
  •  
  • 21. Staehelln, J. and Holgne, J., 1982, Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide, Environ. Sci. Technol., 16, 676-681.
  •  
  • 22. Stowell, J.P. and Jensen, J.N., 1991, Dechlorination of chlorendic acid with ozone, Wat. Res., 25, 83-90.
  •  
  • 23. Theis, C.V., 1935, The relationship between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage, Trans. Am. Geophys. Union, 2, 519-524.
  •  
  • 24. TRCC (ThermoRetec Consulting Corporation), HydroGeo- Logic, Inc., Coleman Research Corporation-Energy & environmental Group, 1999, In situ oxidation (Technology status review), Environmental Security Certification Program, USA, 42.
  •  
  • 25. USACE, 1995, Soil vapor extraaction and bioventing. EM 1110-1-4001, USACE, Department of Army, Washington, DC.
  •  
  • 26. Venkatraman, S.N., Schuring, J.R., Boland T.M., Bossert, I.D., and Kosson D.S., 1998, Application of pneumatic fracturing to enhance in situ bioremediation, J. Soil Contam., 7(2), 143-162.
  •  
  • 27. Watts, R.J., Bottenberg, B.C., Hess, T.F., Jensen, M.D., and Teel, A.L., 1999, Role of reductants in the enhanced desorption and transformation of chloraliphatic compounds by modified fenton's reactions, Environ. Sci. Technol., 33, 3432-3437.
  •  

This Article

  • 2012; 17(4): 44-50

    Published on Aug 31, 2012

  • 10.7857/JSGE.2012.17.4.044
  • Received on Jul 24, 2012
  • Revised on Aug 11, 2012
  • Accepted on Aug 13, 2012

Correspondence to

  • E-mail: