Removal of Benzene in Solution by using the Bio-carrier with Dead Bacillus drentensis sp. and Polysulfone
Park, Sanghee;Lee, Minhee;
Department of Earth Environmental Sciences, Pukyong National University;Department of Earth Environmental Sciences, Pukyong National University;
Bacillus drentensis sp. 사균과 polysulfone으로 이루어진 미생물담체를 이용한 수용액 내 벤젠 제거
박상희;이민희;
부경대학교 지구환경과학과;부경대학교 지구환경과학과;
References
1. Aksu, Z. and Gnen, F., 2004, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochemistry, 39, 599-613.
2. Atlas, R.M. and Philp, J., 2005, Bioremediation: applied microbial solutions for real-world environment cleanup, Washington, DC, America Society for Microbiology.
3. Bai, R.S. and Abraham, T.E., 2003, Studies on chromium(VI) adsorption -desorption using immobilized fungal biomass, Bioresource Technology, 87, 17-26.
4. Banerjee, S., Yalkowsky, S.H., and Valvani, S.C., 1980, Water solubility and octanol/water partition coefficients of organics. Limitations of the solubility-partition coefficient correlation, Environ. Sci. Technol, 14, 1227-1229.
5. Bedient, P.B., Rifai, H.S., and Newell, C.J., 1994, Groundwater contamination: transport and remediation, Prentice Hall PTR, Englewood Cliffs, NJ.
6. Beolchini, F., Pagnanelli, F., Toro, L., and Vegli, F., 2003, Biosorption of copper by Sphaerotilus natans immobilised in polysulfone matrix: equilibrium and kinetic analysis, Hydrometallurgy, 70, 101-112.
7. Cabuk, A., Akar, T., Tunali, S., and Tabak, O., 2006, Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb(II), Journal of Hazardous Materials, 136, 317-323.
8. Choi, A.J., Wang, S.K., and Lee, M.H., 2009, Biosorption of cadmium, copper, and lead ions from aqueous solutions by Ralstonia sp. and Bacillus sp. isolated from diesel and heavy metal contaminated soil, Geosciences Journal, 13(4), 331-341.
9. Chung, S. and Lee, D., 2012, Remediation of PCE-contaminated groundwater using permeable reactive barrier system with M0M-bentonite, J. Soil and Groundwater Environ., 17, 73-80.
10. El-Naas, M.H., Al-Muhtaseb, S.A., and Makhlouf, S., 2009, Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol(PVA)gel, Journal of Hazardous Materials, 164, 720-725.
12. Heyrman, J., Vanparys, B., Logan, N.A., Balcaen, A., Rodriguez-Diaz, M., Felske, A., and Vos, P.D., 2004, Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the drentse a grasslands, Int. J. Syst. Bacteriol, 54, 47-57.
13. IARC, 1987, Monographs, Suppl, 6, 120-122.
14. Jung, H., Do, W., Lee, M., and Ok, G., 2004, Investigation of sorption properties for benzene, TCE, 1,2,-dichlorobenzene, and lindane depending on soil characteristics, J. Geol. Soc. Korea, 40, 241-254.
15. Kapoor, A. and Viraraghavan, T., 1998, Removal of heavy metals from aqueous solutions using immobilized fungal biomass in continuous mode, Water Res., 32, 1968-1977.
16. Kim, S., Chon, H., and Lee, J., 2009, Biosorption of Pb and Cd by Indigenous Bacteria Isolated from Soil Contaminated with Oil and Heavy Metals, Econ. Environ. Geol., 45, 427-434.
17. Korean Ministry of Environment (KME), 2011, Regulation for drinking water and analysis.
18. Korean Ministry of Environment (KME), 2012, Regulation for groundwater.
19. Langmuir, I., 1918, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403.
20. Lazaro, N., Sevilla, A.L., Morales, S., and Marques, A.M., 2003, Heavy metal biosorption by gellan gum gel beads, Water Research, 37, 2118-2126.
21. Lee, J.Y., 2011, Biosorption of heavy metals from aqueous solutions using immobilized dead Bacillus sp. in polysulfone beads; Ms. Thesis, Pukyong National University, Korea.
22. Lee, M., Lee, J., and Wang, S., 2010, Remediation of heavy metal contaminated groudwater by using the bio-carrier with dead Bacillus sp. B1 and polysulfone, Econ. Environ. Geol., 43, 555-564.
23. Lopez, A., Lazaro, N., and Marques, A.M., 1997, The interphase technique: a simple method of cell immobilization in gelbeads, Journal of Microbiological Methods, 30, 231-234.
24. Lozinsky, V.I., Zubov, A.L., and Titova, E.F., 1997, Poly (vinyl alcohol) cryogels employed as matrices for cell immobilization. 2. Entrapped cells resemble porous fillers in their effects on the properties of PVA-cryogel carrier, Enzyme and Microbial Technology, 20, 182-190.
26. Moyer, C.L., Dobbs, F.C., and Karl, D.M., 1994, Estimation of diversity and community structure through RFLP distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent, Loihi Seamount, Hawaii, Applied and Environment Microbiology, 60, 871-879.
27. NFPA: Fire protection guide to hazardous materials, 1994, 12th Edition, National fire protection association, Quincy, MA.
28. Park, S.H., 2012, Study of the benzene removal in solution for the immobilized carriers using dead Bacillus sp. and polysulfone; Ms. Thesis, Pukyong National University, Korea.
29. Riser-Roberts, E., 1998, Remediation of petroleum contaminated soils: Biological, physical, and chemical processes, Lewis Publishers, Boca Raton.
30. Rosen, M.J., 1989, Surfactants and interfacial phenomena, 2nd ed., John Wiley & Sons, pp. 431.
31. Spiniti, M., Zhuang, H., and Trujillo, E.M., 1995, Evaluation of immobilized biomass beads for removing heavy metals from wastewater, Water. Environ. Res., 67, 943-952.
32. Texier, A.C., Andrs, Y., Faur-Brasquet, C., and Le Cloirec, P., 2002, Fixed- bed study for lanthanide (La, Eu, Yb) ions removal from aqueous solutions by immobilized Pseudomonas aeruginosa: experimental data and modelization. Chemosphere, 47, 333-342.
33. USEPA, 1994, Air Sparging, available at http://www.epa.gov/oust/pubs/tum_ch7. pdf.
34. USEPA, 1998, Permeable Reactive Barrier technologies for contaminant remediation, Office of Solid Waste and Emergency Response, Washington, DC, EPA-600-R-98-125.
35. USEPA, 2002, Integrated risk information system (IRIS) on benzene. Toxicological review of benzene, National center for environmental assessment, Office of research and development, Washington, DC. EPA-635-R-02-001F.
36. Veglio, F., Beolchini, F., and Toro, L., 1998, Kinetic modelling of copper biosorption by immobilized biomass, Industrial and Engineering Chemistry Research, 77, 1107-1111.
37. Volesky, B. and Holan, Z.R., 1995, Biosorption of heavy metals, Biotechnol. Prog., 11, 235-250.
38. Wikipedia, 2012. Wikipedia; the free encyclopedia. available at http://en. wikipedia.org/wiki/polysulfone.
39. Zouboulis, A.I., Matis, K.A., Loukidou, M., and ebesta, F., 2003, Metal biosorption by PAN-immobilized fungal biomass in simulated wastewaters, Colloids and Surfaces A: Physicochem. Eng. Aspects, 212, 185-195.