Effects of Soil Remediation Methods on the Biological Properties of Soils
Yi, Yongmin;Kim, Gukjin;Sung, Kijune;
Department of Ecological Engineering, Pukyong National University;OIKOS Co. Ltd.;Department of Ecological Engineering, Pukyong National University;
오염토양 정화공법이 토양의 생물학적 특성에 미치는 영향
이용민;김국진;성기준;
부경대학교 생태공학과;(주)오이코스;부경대학교 생태공학과;
References
1. An, Y.J. and Jeong, S.W., 2005, Soil pollution assessment based on ecotoxicological methods, J. Soil &Groundwater Env., 10(6), 56-62.
2. Blakely, J.K., Neher, D.A., and Spongberg, A.L., 2002, Soil invertebrate and microbial communities, and decomposition as indicators of polycyclic aromatic hydrocarbon contamination, Appl. Soil Ecol., 21, 71-88.
3. Brady, N.C. and Weil, R.R., 2010, The Nature and Properties of Soil, 3rd edition, Pearson Education, Inc., New Jersey, 303, 336, 395, 396 p.
4. Cebron, A., Beguiristain, T., Faure, P., Norini, M.P., Mastaraud, J.F., Leyval, C., 2009, Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorptiontreated soil, Appl. Soil Ecol., 75(19), 6322-6330
5. Cho, S.H., Son, Y.G., Nam, S.G., Cui, M., and Khim, J.H., 2010, The effects of ultrasound application to anionic/non-ionic surfactant aided soil-washing process for enhancing diesel contaminated soils remediation, Journal of the Environmental Sciences, 19(2), 247-254.
6. Choi, H.E., Jung, J.H., Han, Y.R., Kim, D.Y., Jung, B.G., and Choi, Y.I., 2011, Study on the treatment of oil contaminated soils with micro-nano bubbles soil washing system, Journal of the Environmental Science, 20(10), 1329-1336
7. Dawson, J.J.C., Godsiffe, E.F., Thompson, I.P., Ralebitso-Senior, T.K., Killham, K.S., and Paton, G.I., 2007, Application of biological indicators to assess recovery of hydrocarbon impacted soils, Soil Biol. Biochem., 39, 164-177.
8. Dazy, M., Ferard, J.F., and Masfaraud, J.F., 2009, Use of a plant multiple-species experiment for assessing the habitat function of a coke factory soil before and after thermal desorption treatment, Ecological Engineering, 35, 1493-1500.
9. Grumiaux, F., Demuynck, S., Schikorski, D., Lemiere, S., Vandenbulcke, F., and Lepretre, A., 2007, Effect of fluidized bed combustion ashes used in metal polluted soil remediation on life history traits of the oligochaeta Eisenia andrei, European Journal of Soil Biology, 43, 256-260.
10. Ha, S.A. and Yeom, H.K., 2007, A study on treatment conditions of oil contaminated soil by low temperature thermal desorption, J. Korean Soc. Environ. Eng., 29(8), 956-960.
11. Hong, S.C., Kim, G.J., Lee, S.W., Chae, S.H., Oh, S.T., Lee, C.H., and Chang, Y.Y., 2008, Application of in-situ thermal desorption coupled with thermophilic hydrocarbon degradable microbial consortia for the remediation of hydrocarbon contaminated soils, J. Mater. Cycles. Waste., 25(5), 484-491.
12. Hur, J.H. and Jeong, S.W., 2011, Effect of water thoroughly rinsing in the artificially metal contaminated soil preparation on final soil metal concentration, J. Korean Soc. Environ. Eng., 33(9), 670-676.
13. Hwang, J.H., Choi, W.J., Kim, M.C., Jung, J.H., Ha, S.H., and Oh, K.J., 2008, A study on soil washing for diesel-contaminated soil by using decomposition of $NaOH/H_{2}O_{2}$, J. Korean Soc. Environ. Eng., 30(10), 999-1005.
14. Jo, I.H., 2008, SAS Lecture and Statistics Consulting, 141 p.
15. Jones, J.B., 2001, Laboratory Guide for Conducting Soil Tests and Plant Analysis, CRC Press, Boca Ration, London, New York, Washington, D.C., p. 68-69.
16. Kim, K.S. and Sung, K., 2011, Effects of humic acids on growth of herbaceous plants in soil contaminated with high concentration of petroleum hydrocarbons and heavy metals, J. Soil & Groundwater Env., 16(1), 51-61.
17. Langdon, C.J., Hodson, M.E., Arnold, R.E., and Black, S., 2005, Survival, Pb-uptake and behaviour of three species of earthworm in Pb treated soils determined using an OECD-style toxicity test and a soil avoidance test, Environ. Pollut., 138, 368-375.
18. Lee, M.H., Choi, S.I., Lee, J.Y., Lee, K.G., and Park, J.W., 2006, Environment for Soil and Groundwater, Donghwa press, Seoul, Korea, 305 p.
19. Lee, W.J., 2006, A study on the operation conditions for bunker A oil contaminated soil using low temperature thermal desorption(LTTD), J. of Kor. Soc. Waste Management, 23(8), 706-711.
20. Lim, J.M., Salido, A.L., and Butcher, D.J., 2004, Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics, Microchemical Journal, 76, 3-9.
21. Makoi, J.H.J.R. and Ndakidemi, P.A., 2008, Selected soil enzymes : Examples of their potential roles in the ecosystem, African J. of Biotechnology, 7(3), 181-191.
22. MOE (Ministry of Environment), 2009, Standard Methods for Examination of Soil, p. 69-79, 173-183.
23. NAIST, 2000, Methods for Soil and Plant Analysis, NAIST, Rural Development Administration, Korea.
24. Nam, B.H., Park, B.J., and Yun, H.S., 2008, Biodegradation of JP-8 by Rhodococcus fascians isolated from petroleum contaminated Soil, Kor. Chem. Eng. Res. 46(4), 819-823.
25. Oh, S.J., Wie, M.A., Yun, H.S., Kim, S.C., Yang, J.E., and Ok, Y.S., 2012, Ecological toxicity assessment for cadmium with germination and bioaccumulation test, Journal of Agriculture, Life and Environmental Science, 24(1), 22-28.
26. Park, S.Y., Lee, I.C., Yi, B.H., Lee, J.Y.. Yi, Y.M., and Sung, K.J., 2008, Initial change of environmental factors at artificial tidal flat constructed using ocean dredged sediment, J. Kor. Soc. Marine Environmental Eng., 11(2), 63-69.
27. Paul, E.A. and Clark, F.E., 1989, Soil Microbiology and Bio chemistry, Academic Press, San Diego, California, p. 32-46.
28. Quartacci, M.F., Argilla, A., Baker, A.J.M., and Navari-Izzo, F., 2006, Phytoextraction of metals from a multiply contaminated soil by Indian mustard, Chemosphere, 63, 918-25.
29. Robidoux, P.Y., Svendsen, C., Caumartin, J., Hawari, J., Ample-man, G., Thiboutot, S., Weeks, J.M., and Sunahara, G.I., 2000, Chronic toxicity of energetic compounds in soil determined using the earthworm (Eisenia andrei) reproduction test, Environ. Toxicol. Chem., 19(7), 1764-1773.
30. Shakir Hanna, S.H. and Weaver, R.W., 2002, Earthworm survival in oil contaminated soil, Plant Soil, 240, 127-132.
31. Shepard, F., 1954, Nomenclature based on sand-silt-clay ratios, J. Sed. Pet., 24, 151-158.
32. Speir, T.W., Hettles, H.A., Percival, H.J., and Parshotam, A., 1999, Is soil acidification the cause of biochemical responses when soils are amended with heavy metal salt?, Soil Biol. Biochem., 31, 1953-1961.
33. Suh, J.S., Kim, S.H., and Um, M.H., 2000, Diversity of soil microbes and assessment of soil health, Kor. Asso. Org. Agr., the first half of symposium, 135-148.
34. Trasar-Cepeda, C., Leiro's, M.C., Seoane, S., and Gil-Sotres, F., 2000, Limitations of soil enzymes as indicators of soil pollutions, Soil Biol. Biochem., 32, 1867-1875.
35. Walker, D.J., Clemente, R., Roig, A., and Bernal, M.P., 2003, The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils, Environ. Pollut., 122, 303-312.
36. Wang, Q.Y., Zhou, D.M., Cang, L., and Sun, T.R., 2009, Application of bioassays to evaluate a copper contaminated soil before and after pilot-scale electrokinetic remediation, Environ. Pollut., 157, 410-416.
37. Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith S., Tabatabai A., and Wollum A., 1994, Methods of Soil Analysis : Part2-Microbiological and Biochemical Properties, Soil Science Society of America, Inc., Madison, Wisconsin, p. 807-826.
38. Welp, G., 1999, Inhibitory effects of the total and water-soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil, Biol. Ferti. Soils, 30(1-2), 132-139.
39. Yang, J.W. and Lee, Y.J., 2007, Status of soil remediation and technology development in Korea, Kor. Chem. Eng. Res. 45(4), 311-318.
40. Yi, Y.M., Oh, C.T, Kim, G.J, Lee, C.H., and Sung, K.J., 2012, Changes in the physicochemical properties of soil according to soil remediation methods, J. Soil &Groundwater Env., 17(4), 36-43.