Biotic and Abiotic Reduction of Goethite (α-FeOOH) by Subsurface Microorganisms in the Presence of Electron Donor and Sulfate
Kwon, Man Jae;Yang, Jung-Seok;Shim, Moo Joon;Lee, Seunghak;Boyanov, Maxim;Kemner, Kenneth;O'Loughlin, Edward;
Korea Institute of Science and Technology;Korea Institute of Science and Technology;Korea Institute of Science and Technology;Korea Institute of Science and Technology;Argonne National Laboratory;Argonne National Laboratory;Argonne National Laboratory;
1. Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D.R., Peacock, A., White, D.C., Lowe, M., and Lovley, D.R., 2003, Stimulating the in situ activity of geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer, Appl. Environ. Microbiol., 69, 5884-5891.
2. Barton, L. and Hamilton, W.A., 2007, Sulphate-reducing bacteria environmental and engineered systems, Cambridge University Press, Cambridge; New York.
3. Bethke, C.M., Sanford, R.A., Kirk, M.F., Jin, Q., and Flynn, T.M., 2011, The thermodynamic ladder in geomicrobiology, Am. J. Sci., 311, 183-210.
4. Borch, T., Masue, Y., Kukkadapu, R.K., and Fendorf, S., 2007, Phosphate imposed limitations on biological reduction and alteration of ferrihydrite, Environ. Sci. Technol., 41, 166-172.
5. Burkhardt, E.-M., Bischoff, S., Akob, D.M., Buchel, G., and Kusel, K., 2011, Heavy metal tolerance of Fe(III)-reducing microbial communities in contaminated creek bank soils, Appl. Environ. Microbiol., 77, 3132-3136.
6. Canfield, D.E., Raiswell, R., and Bottrell, S.H., 1992, The reactivity of sedimentary iron minerals toward sulfide, Am. J. Sci., 292, 659-683.
7. Chappelle, F.H., 2001, Groud-Water Microbiology and Geochemistry, John Wiley & Sons, New York, NY.
8. dos Santos Afonso, M., and Stumm, W., 1992, Reductive dissolution of iron(III) (hydr)oxides by hydrogen sulfide, Langmuir, 8, 1671-1675.
9. Francis, A.J. and Dodge, C.J., 1988, Anaerobic microbial dissolution of transition and heavy metal oxides, Appl. Environ. Microbiol., 54, 1009-1014.
10. Galvez, N., Barron, V., and Torrent, J., 1999, Effect of phosphate on the crystallization of hematite, goethite, and lepidocrocite from ferrihydrite, Clay Clay Miner., 47, 304-311.
11. Gao, Y. and Mucci, A., 2001, Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution, Geochim. Cosmochim. Acta, 65, 2361-2378.
13. Kim, S., Lee, W.C., Jeong, H., and Cho, H.G., 2009, Adsorption of arsenic on goethite, J. Miner. Soc. Korea, 22, 177-189.
14. Kirk, M.F., Holm, T.R., Park, J., Jin, Q., Sanford, R.A., Fouke, B.W., and Bethke, C.M., 2004, Bacterial sulfate reduction limits natural arsenic contamination in groundwater, Geology, 32, 953-956.
15. Koretsky, C.M., Moore, C.M., Lowe, K.L., Meile, C., DiChristina, T.J., and Van Cappellen, P., 2003, Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA), Biogeochemistry, 64, 179-203.
16. Kwon, M.J., O'Loughlin, E.J., Antonopoulos, D.A., and Finneran, K.T., 2011, Geochemical and microbiological processes contributing to the transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated aquifer material, Chemosphere, 84, 1223-1230.
17. Lloyd, J.R., 2003, Microbial reduction of metals and radionuclides, FEMS Microbiol. Rev., 27, 411-425.
18. Lovley, D.R., 1987, Organic matter mineralization with the reduction of ferric iron: A review, Geomicrobiol. J., 5, 375-399.
21. Madigan, M.T., Martinko, J.M., and Parker, J., 2003, Brock biology of microorganisms, 10th ed. Prentice Hall/Pearson Education, Upper Saddle River, NJ.
22. Neal, A.L., Techkarnjanaruk, S., Dohnalkova, A., McCready, D., Peyton, B.M., and Geesey, G.G., 2001, Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria, Geochim. Cosmochim. Acta, 65, 223-235.
23. O'Loughlin, E.J., Gorski, C.A., Scherer, M.M., Boyanov, M.I., and Kemner, K.M., 2010, Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite ($\gamma$-FeOOH) and the formation of secondary mineralization products, Environ. Sci. Technol., 44, 4570-4576.
24. Ozdemir, O. and Dunlop, D.J., 2000, Intermediate magnetite formation during dehydration of goethite, Earth Planet. Sci. Lett., 177, 59-67.
25. Poulton, S.W., 2003, Sulfide oxidation and iron dissolution kinetics during the reaction of dissolved sulfide with ferrihydrite, Chem. Geol., 202, 79-94.
26. Pyzik, A.J. and Sommer, S.E., 1981, Sedimentary iron monosulfides:Kinetics and mechanism of formation, Geochim. Cosmochim. Acta, 45, 687-698.
27. Roden, E.E. and Zachara, J.M., 1996, Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth, Environ. Sci. Technol., 30, 1618-1628.