Effects of Extracellular Electron Shuttles on Microbial Iron Reduction and Heavy Metals Release from Contaminated Soils
Hwang, Yun Ho;Shim, Moo Joon;Oh, Du Hyun;Yang, Jung-Seok;Kwon, Man Jae;
Green School, Korea University;Korea Institute of Science and Technology;Korea Institute of Science and Technology;Korea Institute of Science and Technology;Green School, Korea University;
References
1. Ayyasamy, P.M., Chun, S., and Lee, S., 2009, Desorption and dissolution of heavy metals from contaminated soil using Shewanella sp. (HN-41) amended with various carbon sources and synthetic soil organic matters, J. Hazard. Mater., 161, 1095- 1102.
2. Bae, S. and Lee, W., 2013, Biotransformation of lepidocrocite in the presence of quinones and flavins, Geochim. Cosmochim. Acta, 114, 144-155.
3. Bertolacini, R. and Barney, J., 1957, Colorimetric determination of sulfate with barium chloranilate, Anal. Chem., 29, 281-283.
4. Caccavo, F., Blakemore, R.P., and Lovley, D.R., 1992, A hydrogen- oxidizing, Fe (III)-reducing microorganism from the Great Bay Estuary, New Hampshire, Appl. Environ. Microbiol., 58, 3211-3216.
5. Cervantes, F.J., van der Velde, S., Lettinga, G., and Field, J.A., 2000, Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia, FEMS Microbiol. Ecol., 34, 161-171.
6. Chuan, M., Shu, G., and Liu, J., 1996, Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH, Water Air Soil Poll., 90, 543-556.
7. Coates, J.D., Ellis, D.J., Blunt-Harris, E.L., Gaw, C.V., Roden, E.E., and Lovley, D.R., 1998, Recovery of humic-reducing bacteria from a diversity of environments, Appl. Environ. Microbiol., 64, 1504-1509.
8. Cooper D.C., Flynn, W. P., Arndt, S., and Aaron, J.C., 2003, Chemical and Biological Interactions during Nitrate and Goethite Reduction by Shewanella putrefaciens 200, Appl. Environ. Microbial., 69, 6 3517-3525.
9. Cummings, D.E., Caccavo, F., Fendorf, S., and Rosenzweig, R.F., 1999, Arsenic mobilization by the dissimilatory Fe (III)- reducing bacterium Shewanella alga BrY, Environ. Sci. Technol., 33, 723-729.
10. Finneran, K.T. and Lovley, D.R., 2001, Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA), Environ. Sci. Technol., 35, 1785-1790.
11. Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Duff, M.C., Gorby, Y.A., Li, S.-m.W., and Krupka, K.M., 2000, Reduction of U(VI) in goethite (a-FeOOH) suspensions by a dissimilatory metal-reducing bacterium, Geochim. Cosmochim. Acta, 64, 3085-3098.
12. Gerlach, R., Field, E.K., Viamajala, S., Peyton, B.M., Apel, W.A., and Cunningham, A.B., 2011, Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. strain ES6, Biodegrad., 22, 983-995.
13. Gounou, C., Bousserrhine, N., Varrault, G., and Mouchel, J.-M., 2010, Influence of the iron-reducing bacteria on the release of heavy metals in anaerobic river sediment, Water Air Soil Poll., 212, 123-139.
14. Howard, P. and Howard, D., 1990, Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons, Biol. Fert. Soils, 9, 306-310.
15. Kwon, M. and Finneran, K., 2008, Biotransformation products and mineralization potential for hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2,6-disulfonate (AQDS) and Geobacter metallireducens, Biodegrad., 19, 705-715.
16. Kwon, M. and Finneran, K., 2010, Electron shuttle-stimulated RDX mineralization and biological production of 4-nitro-2,4- diazabutanal (NDAB) in RDX-contaminated aquifer material, Biodegrad., 21, 923-937.
17. Kwon, M., Ham, B., Hwang, Y., Choi, J., Boyanov, M., Kemner, K., O'Loughlin, E., and Yang, J.-S., 2013, Geochemical characteristics and microbial community composition of toxic metalrich sediments contaminated from mine tailings, Mineral. Mag., 77, 1533.
18. Kwon, M.J., Sanford, R.A., Park, J., Kirk, M.F., and Bethke, C.M., 2008, Microbiological response to well pumping, Ground Wate., 46, 286-294.
19. Lee, J.-U., Lee, S.-W., Chon, H.-T., Kim, K.-W., and Lee, J.-S., 2009, Enhancement of arsenic mobility by indigenous bacteria from mine tailings as response to organic supply, Environ. Int., 35, 496-501.
20. Liu, G. and Cai, Y., 2010, Complexation of arsenite with dissolved organic matter: Conditional distribution coefficients and apparent stability constants, Chemosphere, 81, 890-896.
21. Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P., and Woodward, J.C., 1996, Humic substances as electron acceptors for microbial respiration, Nature, 382, 445-448.
22. Lovley, D.R., Fraga, J.L., Blunt-Harris, E.L., Hayes, L.A., Phillips, E.J.P., and Coates, J.D., 1998, Humic substances as a mediator for microbially catalyzed metal reduction, Acta Hydrochim. Hydrobiol., 26, 152-157.
23. McDonough, W.F. and Sun, S.-S., 1995, The composition of the earth, Chem. Geol., 120, 223-253.
24. Mcheik, A., Fakih, M., Bousserrhine, N., Toufaily, J., Garnier- Zarli, E., and Hamieh, T., 2013, Biomobilization of heavy metals from the sediments affect the bacterial population of Al-Ghadir river (Lebanon), Agriculture, Forestry and Fisheries, 2, 116- 125.
25. Mitsunobu, S., Shiraishi, F., Makita, H., Orcutt, B.N., Kikuchi, S., Jorgensen, B.B., and Takahashi, Y., 2012, Bacteriogenic Fe (III) (oxyhydr)oxides characterized by synchrotron microprobe coupled with spatially resolved phylogenetic analysis, Environ. Sci. Technol., 46, 3304-3311.
26. Roden, E.E. and Zachara, J.M., 1996, Microbial reduction of crystalline iron (III) oxides: Influence of oxide surface area and potential for cell growth, Environ. Sci.Technol., 30, 1618-1628.
27. Stookey, L.L., 1970, Ferrozine-a new spectrophotometric reagent for iron, Anal. Chem., 42, 779-781.
28. Treeby, M., Marschner, H., and Romheld, V., 1989, Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators, Plant Soil, 114, 217-226.
29. Yun, S.-T., Jung, H.-B., and So, C.-S., 2001, Transport, fate and speciation of heavy metals (Pb, Zn, Cu, Cd) in mine drainage: Geochemical modeling and anodic stripping voltammetric analysis, Environ. Technol., 22, 749-770.
30. Zachara, J.M., Kukkadapu, R.K., Fredrickson, J.K., Gorby, Y.A., and Smith, S.C., 2002, Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB), Geomicrobiol. J., 19, 179-207.