• Effects of Extracellular Electron Shuttles on Microbial Iron Reduction and Heavy Metals Release from Contaminated Soils
  • Hwang, Yun Ho;Shim, Moo Joon;Oh, Du Hyun;Yang, Jung-Seok;Kwon, Man Jae;
  • Green School, Korea University;Korea Institute of Science and Technology;Korea Institute of Science and Technology;Korea Institute of Science and Technology;Green School, Korea University;
References
  • 1. Ayyasamy, P.M., Chun, S., and Lee, S., 2009, Desorption and dissolution of heavy metals from contaminated soil using Shewanella sp. (HN-41) amended with various carbon sources and synthetic soil organic matters, J. Hazard. Mater., 161, 1095- 1102.
  •  
  • 2. Bae, S. and Lee, W., 2013, Biotransformation of lepidocrocite in the presence of quinones and flavins, Geochim. Cosmochim. Acta, 114, 144-155.
  •  
  • 3. Bertolacini, R. and Barney, J., 1957, Colorimetric determination of sulfate with barium chloranilate, Anal. Chem., 29, 281-283.
  •  
  • 4. Caccavo, F., Blakemore, R.P., and Lovley, D.R., 1992, A hydrogen- oxidizing, Fe (III)-reducing microorganism from the Great Bay Estuary, New Hampshire, Appl. Environ. Microbiol., 58, 3211-3216.
  •  
  • 5. Cervantes, F.J., van der Velde, S., Lettinga, G., and Field, J.A., 2000, Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia, FEMS Microbiol. Ecol., 34, 161-171.
  •  
  • 6. Chuan, M., Shu, G., and Liu, J., 1996, Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH, Water Air Soil Poll., 90, 543-556.
  •  
  • 7. Coates, J.D., Ellis, D.J., Blunt-Harris, E.L., Gaw, C.V., Roden, E.E., and Lovley, D.R., 1998, Recovery of humic-reducing bacteria from a diversity of environments, Appl. Environ. Microbiol., 64, 1504-1509.
  •  
  • 8. Cooper D.C., Flynn, W. P., Arndt, S., and Aaron, J.C., 2003, Chemical and Biological Interactions during Nitrate and Goethite Reduction by Shewanella putrefaciens 200, Appl. Environ. Microbial., 69, 6 3517-3525.
  •  
  • 9. Cummings, D.E., Caccavo, F., Fendorf, S., and Rosenzweig, R.F., 1999, Arsenic mobilization by the dissimilatory Fe (III)- reducing bacterium Shewanella alga BrY, Environ. Sci. Technol., 33, 723-729.
  •  
  • 10. Finneran, K.T. and Lovley, D.R., 2001, Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA), Environ. Sci. Technol., 35, 1785-1790.
  •  
  • 11. Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Duff, M.C., Gorby, Y.A., Li, S.-m.W., and Krupka, K.M., 2000, Reduction of U(VI) in goethite (a-FeOOH) suspensions by a dissimilatory metal-reducing bacterium, Geochim. Cosmochim. Acta, 64, 3085-3098.
  •  
  • 12. Gerlach, R., Field, E.K., Viamajala, S., Peyton, B.M., Apel, W.A., and Cunningham, A.B., 2011, Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. strain ES6, Biodegrad., 22, 983-995.
  •  
  • 13. Gounou, C., Bousserrhine, N., Varrault, G., and Mouchel, J.-M., 2010, Influence of the iron-reducing bacteria on the release of heavy metals in anaerobic river sediment, Water Air Soil Poll., 212, 123-139.
  •  
  • 14. Howard, P. and Howard, D., 1990, Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons, Biol. Fert. Soils, 9, 306-310.
  •  
  • 15. Kwon, M. and Finneran, K., 2008, Biotransformation products and mineralization potential for hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2,6-disulfonate (AQDS) and Geobacter metallireducens, Biodegrad., 19, 705-715.
  •  
  • 16. Kwon, M. and Finneran, K., 2010, Electron shuttle-stimulated RDX mineralization and biological production of 4-nitro-2,4- diazabutanal (NDAB) in RDX-contaminated aquifer material, Biodegrad., 21, 923-937.
  •  
  • 17. Kwon, M., Ham, B., Hwang, Y., Choi, J., Boyanov, M., Kemner, K., O'Loughlin, E., and Yang, J.-S., 2013, Geochemical characteristics and microbial community composition of toxic metalrich sediments contaminated from mine tailings, Mineral. Mag., 77, 1533.
  •  
  • 18. Kwon, M.J., Sanford, R.A., Park, J., Kirk, M.F., and Bethke, C.M., 2008, Microbiological response to well pumping, Ground Wate., 46, 286-294.
  •  
  • 19. Lee, J.-U., Lee, S.-W., Chon, H.-T., Kim, K.-W., and Lee, J.-S., 2009, Enhancement of arsenic mobility by indigenous bacteria from mine tailings as response to organic supply, Environ. Int., 35, 496-501.
  •  
  • 20. Liu, G. and Cai, Y., 2010, Complexation of arsenite with dissolved organic matter: Conditional distribution coefficients and apparent stability constants, Chemosphere, 81, 890-896.
  •  
  • 21. Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P., and Woodward, J.C., 1996, Humic substances as electron acceptors for microbial respiration, Nature, 382, 445-448.
  •  
  • 22. Lovley, D.R., Fraga, J.L., Blunt-Harris, E.L., Hayes, L.A., Phillips, E.J.P., and Coates, J.D., 1998, Humic substances as a mediator for microbially catalyzed metal reduction, Acta Hydrochim. Hydrobiol., 26, 152-157.
  •  
  • 23. McDonough, W.F. and Sun, S.-S., 1995, The composition of the earth, Chem. Geol., 120, 223-253.
  •  
  • 24. Mcheik, A., Fakih, M., Bousserrhine, N., Toufaily, J., Garnier- Zarli, E., and Hamieh, T., 2013, Biomobilization of heavy metals from the sediments affect the bacterial population of Al-Ghadir river (Lebanon), Agriculture, Forestry and Fisheries, 2, 116- 125.
  •  
  • 25. Mitsunobu, S., Shiraishi, F., Makita, H., Orcutt, B.N., Kikuchi, S., Jorgensen, B.B., and Takahashi, Y., 2012, Bacteriogenic Fe (III) (oxyhydr)oxides characterized by synchrotron microprobe coupled with spatially resolved phylogenetic analysis, Environ. Sci. Technol., 46, 3304-3311.
  •  
  • 26. Roden, E.E. and Zachara, J.M., 1996, Microbial reduction of crystalline iron (III) oxides: Influence of oxide surface area and potential for cell growth, Environ. Sci.Technol., 30, 1618-1628.
  •  
  • 27. Stookey, L.L., 1970, Ferrozine-a new spectrophotometric reagent for iron, Anal. Chem., 42, 779-781.
  •  
  • 28. Treeby, M., Marschner, H., and Romheld, V., 1989, Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators, Plant Soil, 114, 217-226.
  •  
  • 29. Yun, S.-T., Jung, H.-B., and So, C.-S., 2001, Transport, fate and speciation of heavy metals (Pb, Zn, Cu, Cd) in mine drainage: Geochemical modeling and anodic stripping voltammetric analysis, Environ. Technol., 22, 749-770.
  •  
  • 30. Zachara, J.M., Kukkadapu, R.K., Fredrickson, J.K., Gorby, Y.A., and Smith, S.C., 2002, Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB), Geomicrobiol. J., 19, 179-207.
  •  

This Article

  • 2014; 19(2): 16-24

    Published on Apr 30, 2014

  • 10.7857/JSGE.2014.19.2.016
  • Received on Mar 12, 2014
  • Revised on Apr 30, 2014
  • Accepted on Apr 30, 2014

Correspondence to

  • E-mail: