Korea Institute of Geoscience and Mineral Resources;Korea Institute of Geoscience and Mineral Resources;Korea Institute of Geoscience and Mineral Resources;Geowater+ Research Center, K-water Institute;
1. Box, G.E.P. and Jenkins, G.M., 1976, Time Series Analysis- Forecasting and Control, Holden-Day, San Francisco, California, USA, 575 p.
2. Coulibaly, P., Anctil, F., Aravena, R., and Bobee, B., 2001, Artificial neural network modeling of water table depth fluctuations. Water Resour. Res., 37(4), 885-896.
3. French, M.N., Krajewski, W.F., and Cuykendall, R.R., 1992, Rainfall forecasting in space and time using a neural network. J. Hydrol., 137(1-4), 1-31.
4. Herrera, L.J., Pomares, H., Rojas, I., Guillen, A., Prieto, A., and Valenzuela, O., 2007, Recursive prediction for long term time series forecasting using advanced models. Neurocomputing, 70(16-18), 2870-2880.
5. Hipel, K.W., Mcleod, A.I., and Lennox, W. C., 1977, Advances in Box-Jenkins modeling: 1. Model construction, Water Resour. Res., 13(3), 567-575.
6. Hong, Y.S.T. and White, P.A., 2009, Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm, Adv. Water Resour., 32, 110-119.
7. Hu, T.S., Lam, K.C., and NG, S.T., 2005, A modified neural network for improving river flow prediction, Hydrol. Sci. J., 50(2), 299-318.
8. Jang, J., 1993, ANFIS: Adaptive-network-based fuzzy inference system, IEEE T. on syst. man cyb., 23(3), 665-685.
9. Ji, Y., Hao, J., Reyhani, N., and Lendasse, A., 2005, Direct and recursive prediction of time series using mutual information selection, Lect. notes comp. sc., 3512, 1010-1017.
10. Karunanithi, N., Grenney, W.J., Whitley, D., and Bovee, K., 1994, Neural networks for river flow prediction, J. of Comp. Civil Eng., 8(2) 201-220.
11. Kisi, O. and Shiri, J., 2012, Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations, Hydrol. Res., 43(3), 286-300.
12. Knotters, M. and Bierkens, M.F.P., 2000, Physical basis of time series models for water table depths, Water Resour. Res., 36(1), 181-188.
13. Maier, H.R. and Dandy, G.C., 2000, Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications, Environ. Modell. Softw., 15, 101-124.
14. Mohanty, S., Jha, M.K., Kumar, A., and Sudheer, K.P., 2010, Artificial neural network modeling for groundwater level forecasting in a river island of eastern India, Water Resour. Manag., 24(9), 1845-1865.
15. Rai, S.N. and Singh, R.N., 1995, Two-dimensional modelling of water table fluctuation in response to localized transient recharge, J. Hydrol., 167, 167-174.
16. Rumelhart, D.E., McClelland, J.L., and The PDP Research Group, 1986, Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge, Massachusetts, USA, 516 p.
17. Tankersley, C.D., Graham, W.D., and Hatfield, K., 1993, Comparison of univariate and transfer function models of groundwater fluctuations, Water Resour. Res., 29, 3517-3533.
18. van Geer, F.C. and Zuur, A.F., 1997, An extension of Box-Jenkins transfer/noise models for spatial interpolation of groundwater head series, J. Hydrol., 192, 65-80.
19. Yi, M.J., Kim, G.B., Sohn, Y.C., Lee, J.Y., and Lee, K.K., 2004, Time series analyses for the groundwater level in the National Groundwater Monitoring Network, J. Geol. Soc. Korea, 50(2), 293-307.
20. Yi, M.J. and Lee, K.K., 2004, Transfer function-noise modeling of irregularly observed groundwater heads using precipitation data, J. Hydrol., 288, 272-287.
21. Yoon, H., Jun, S.-C., Hyun, Y., Bae, G.-O., and Lee, K.-K., 2011, A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer, J. Hydrol., 396(1-2), 128-138.
22. Yoon, H., Kim, Y., Ha, K., and Kim, G.B., 2013, Application of groundwater-level prediction models using data-based learning algorithms to National Groundwater Monitoring Network data, J. Eng. Geol., 23(2), 137-147.
23. Zealand, C.M., Burn, D.H., and Simonovic, S.P., 1999, Shortterm streamflow forecasting using artificial neural networks, J. Hydrol., 214(1-4), 32-48.