• A Comparative Study on Forecasting Groundwater Level Fluctuations of National Groundwater Monitoring Networks using TFNM, ANN, and ANFIS
  • Yoon, Pilsun;Yoon, Heesung;Kim, Yongcheol;Kim, Gyoo-Bum;
  • Korea Institute of Geoscience and Mineral Resources;Korea Institute of Geoscience and Mineral Resources;Korea Institute of Geoscience and Mineral Resources;Geowater+ Research Center, K-water Institute;
  • TFNM, ANN, ANFIS를 이용한 국가지하수관측망 지하수위 변동 예측 비교 연구
  • 윤필선;윤희성;김용철;김규범;
  • 한국지질자원연구원 지구환경연구본부;한국지질자원연구원 지구환경연구본부;한국지질자원연구원 지구환경연구본부;K-water연구원;
References
  • 1. Box, G.E.P. and Jenkins, G.M., 1976, Time Series Analysis- Forecasting and Control, Holden-Day, San Francisco, California, USA, 575 p.
  •  
  • 2. Coulibaly, P., Anctil, F., Aravena, R., and Bobee, B., 2001, Artificial neural network modeling of water table depth fluctuations. Water Resour. Res., 37(4), 885-896.
  •  
  • 3. French, M.N., Krajewski, W.F., and Cuykendall, R.R., 1992, Rainfall forecasting in space and time using a neural network. J. Hydrol., 137(1-4), 1-31.
  •  
  • 4. Herrera, L.J., Pomares, H., Rojas, I., Guillen, A., Prieto, A., and Valenzuela, O., 2007, Recursive prediction for long term time series forecasting using advanced models. Neurocomputing, 70(16-18), 2870-2880.
  •  
  • 5. Hipel, K.W., Mcleod, A.I., and Lennox, W. C., 1977, Advances in Box-Jenkins modeling: 1. Model construction, Water Resour. Res., 13(3), 567-575.
  •  
  • 6. Hong, Y.S.T. and White, P.A., 2009, Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm, Adv. Water Resour., 32, 110-119.
  •  
  • 7. Hu, T.S., Lam, K.C., and NG, S.T., 2005, A modified neural network for improving river flow prediction, Hydrol. Sci. J., 50(2), 299-318.
  •  
  • 8. Jang, J., 1993, ANFIS: Adaptive-network-based fuzzy inference system, IEEE T. on syst. man cyb., 23(3), 665-685.
  •  
  • 9. Ji, Y., Hao, J., Reyhani, N., and Lendasse, A., 2005, Direct and recursive prediction of time series using mutual information selection, Lect. notes comp. sc., 3512, 1010-1017.
  •  
  • 10. Karunanithi, N., Grenney, W.J., Whitley, D., and Bovee, K., 1994, Neural networks for river flow prediction, J. of Comp. Civil Eng., 8(2) 201-220.
  •  
  • 11. Kisi, O. and Shiri, J., 2012, Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations, Hydrol. Res., 43(3), 286-300.
  •  
  • 12. Knotters, M. and Bierkens, M.F.P., 2000, Physical basis of time series models for water table depths, Water Resour. Res., 36(1), 181-188.
  •  
  • 13. Maier, H.R. and Dandy, G.C., 2000, Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications, Environ. Modell. Softw., 15, 101-124.
  •  
  • 14. Mohanty, S., Jha, M.K., Kumar, A., and Sudheer, K.P., 2010, Artificial neural network modeling for groundwater level forecasting in a river island of eastern India, Water Resour. Manag., 24(9), 1845-1865.
  •  
  • 15. Rai, S.N. and Singh, R.N., 1995, Two-dimensional modelling of water table fluctuation in response to localized transient recharge, J. Hydrol., 167, 167-174.
  •  
  • 16. Rumelhart, D.E., McClelland, J.L., and The PDP Research Group, 1986, Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge, Massachusetts, USA, 516 p.
  •  
  • 17. Tankersley, C.D., Graham, W.D., and Hatfield, K., 1993, Comparison of univariate and transfer function models of groundwater fluctuations, Water Resour. Res., 29, 3517-3533.
  •  
  • 18. van Geer, F.C. and Zuur, A.F., 1997, An extension of Box-Jenkins transfer/noise models for spatial interpolation of groundwater head series, J. Hydrol., 192, 65-80.
  •  
  • 19. Yi, M.J., Kim, G.B., Sohn, Y.C., Lee, J.Y., and Lee, K.K., 2004, Time series analyses for the groundwater level in the National Groundwater Monitoring Network, J. Geol. Soc. Korea, 50(2), 293-307.
  •  
  • 20. Yi, M.J. and Lee, K.K., 2004, Transfer function-noise modeling of irregularly observed groundwater heads using precipitation data, J. Hydrol., 288, 272-287.
  •  
  • 21. Yoon, H., Jun, S.-C., Hyun, Y., Bae, G.-O., and Lee, K.-K., 2011, A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer, J. Hydrol., 396(1-2), 128-138.
  •  
  • 22. Yoon, H., Kim, Y., Ha, K., and Kim, G.B., 2013, Application of groundwater-level prediction models using data-based learning algorithms to National Groundwater Monitoring Network data, J. Eng. Geol., 23(2), 137-147.
  •  
  • 23. Zealand, C.M., Burn, D.H., and Simonovic, S.P., 1999, Shortterm streamflow forecasting using artificial neural networks, J. Hydrol., 214(1-4), 32-48.
  •  

This Article

  • 2014; 19(3): 123-133

    Published on Jun 30, 2014

  • 10.7857/JSGE.2014.19.3.123
  • Received on May 2, 2014
  • Revised on May 22, 2014
  • Accepted on May 22, 2014

Correspondence to

  • E-mail: