Comparative Analysis of Subsurface Estimation Ability and Applicability Based on Various Geostatistical Model
Ahn, Jeongwoo;Jeong, Jina;Park, Eungyu;
Department of Geology, Kyungpook National University;Department of Geology, Kyungpook National University;Department of Geology, Kyungpook National University;
다양한 지구통계기법의 지하매질 예측능 및 적용성 비교연구
안정우;정진아;박은규;
경북대학교 지질학과;경북대학교 지질학과;경북대학교 지질학과;
References
1. Arpat, G.B., 2005, Sequential simulation with patterns, Ph.D. thesis, Stanford University, USA, 166 p.
2. Carle, S.F., 1999, T-PROGS: transition probability geostatistical software, Version 2.1, User Manual. Davis, California: Hydrologic Sciences Graduate Group, University of California, USA, 248 p.
4. Deutsch, C.V. and Journel, A.G., 1998, GSLIB: Geostatistical Software Library and User's Guide, 2nd edition, Oxford University Press., New York, 369 p.
5. Deutsch, C.V. and Tran, T.T., 2002, FLUVSIM: a program for object-based stochastic modeling of fluvial depositional systems, Comput. Geosci., 28, 525-535.
6. Deutsch, C.V. and Wang, L., 1996, Hierarchical object-based stochastic modeling of fluvial reservoirs, Math. Geol., 28, 857-880.
7. Goovaerts, P., 1997, Geostatistics for Natural Resources Evaluation, Oxford University Press, New York, 512 p.
8. Hill, M.C., Harbaugh, A.W., Banta, E.R., and McDonald, M.G., 2000, MODFLOW-2000, The U.S. geological survey modular ground-water model-user guide to modularization concepts and the ground-water flow process, U. S. Geol. Survey, 113 p.
9. Holden, L., Hauge, R., Skare, O., and Skorstad., 1998, Modeling of fluvial reservoirs with object models, Math. Geol., 30(5), 473-496.
10. Hu, L.Y. and Chugunova, T., 2008, Multiple-point geostatistics for modeling subsurface heterogeneity: A comprehensive review, Water Resour. Res., 44(11), W11413.
11. Jeong, J. and Park, E., 2013, A Characterization of Oil Sand Reservoir and Selections of Optimal SAGD Locations Based on Stochastic Geostatistical Predictions, Econ. Environ. Geol., 46(4), 313-327.
12. Jeong, J., Paudyal, P., and Park, E., 2012, A Preliminary Study of Enhanced Predictability of Non-Parametric Geostatistical Simulation through History Matching Technique, J. Soil Groundw. Environ., 17(5), 56-67.
13. Koltermann, C.E. and Gorelick, S.M., 1996, Heterogeneity in sedimentary deposits: A review of structure-imitating, processimitating, and descriptive approaches, Water Resour. Res., 32, 2617-2658.
14. Liu, Y., 2006, Using the Snesim program for multiple-point statistical simulation, Comput. Geosci., 32, 1544-1563.
15. Park, E., 2010, A multidimensional generalized coupled Markov chain model for surface and subsurface characterization, Water Resour. Res., 46, W11509.
16. Park, E., Elfeki, A.M.M., Song, Y., and Kim, K., 2007, Generalized coupled Markov chain model for characterizing categorical variables in soil mapping, Soil Sci. Soc. Am. J., 71, 909-917.
17. Remy, N., Alexandre, B., and Jianbing, W., 2009, Applied Geostatistics with SGeMS, Cambridge University Press, Cambridge, 264 p.
18. Strebelle, S., 2000, Sequential simulation drawing structures from training images, Ph.D. thesis, Stanford University, USA, 187 p.
19. Strebelle, S., 2002, Conditional simulation of complex geological structures using multiple-point statistics, Math. Geol., 34(1), 1-22.