• Comparative Analysis of Subsurface Estimation Ability and Applicability Based on Various Geostatistical Model
  • Ahn, Jeongwoo;Jeong, Jina;Park, Eungyu;
  • Department of Geology, Kyungpook National University;Department of Geology, Kyungpook National University;Department of Geology, Kyungpook National University;
  • 다양한 지구통계기법의 지하매질 예측능 및 적용성 비교연구
  • 안정우;정진아;박은규;
  • 경북대학교 지질학과;경북대학교 지질학과;경북대학교 지질학과;
References
  • 1. Arpat, G.B., 2005, Sequential simulation with patterns, Ph.D. thesis, Stanford University, USA, 166 p.
  •  
  • 2. Carle, S.F., 1999, T-PROGS: transition probability geostatistical software, Version 2.1, User Manual. Davis, California: Hydrologic Sciences Graduate Group, University of California, USA, 248 p.
  •  
  • 3. Carle, S.F. and Fogg, G.E., 1996, Transition probability-based indicator geostatistics, Math. Geol., 28(4), 453-477.
  •  
  • 4. Deutsch, C.V. and Journel, A.G., 1998, GSLIB: Geostatistical Software Library and User's Guide, 2nd edition, Oxford University Press., New York, 369 p.
  •  
  • 5. Deutsch, C.V. and Tran, T.T., 2002, FLUVSIM: a program for object-based stochastic modeling of fluvial depositional systems, Comput. Geosci., 28, 525-535.
  •  
  • 6. Deutsch, C.V. and Wang, L., 1996, Hierarchical object-based stochastic modeling of fluvial reservoirs, Math. Geol., 28, 857-880.
  •  
  • 7. Goovaerts, P., 1997, Geostatistics for Natural Resources Evaluation, Oxford University Press, New York, 512 p.
  •  
  • 8. Hill, M.C., Harbaugh, A.W., Banta, E.R., and McDonald, M.G., 2000, MODFLOW-2000, The U.S. geological survey modular ground-water model-user guide to modularization concepts and the ground-water flow process, U. S. Geol. Survey, 113 p.
  •  
  • 9. Holden, L., Hauge, R., Skare, O., and Skorstad., 1998, Modeling of fluvial reservoirs with object models, Math. Geol., 30(5), 473-496.
  •  
  • 10. Hu, L.Y. and Chugunova, T., 2008, Multiple-point geostatistics for modeling subsurface heterogeneity: A comprehensive review, Water Resour. Res., 44(11), W11413.
  •  
  • 11. Jeong, J. and Park, E., 2013, A Characterization of Oil Sand Reservoir and Selections of Optimal SAGD Locations Based on Stochastic Geostatistical Predictions, Econ. Environ. Geol., 46(4), 313-327.
  •  
  • 12. Jeong, J., Paudyal, P., and Park, E., 2012, A Preliminary Study of Enhanced Predictability of Non-Parametric Geostatistical Simulation through History Matching Technique, J. Soil Groundw. Environ., 17(5), 56-67.
  •  
  • 13. Koltermann, C.E. and Gorelick, S.M., 1996, Heterogeneity in sedimentary deposits: A review of structure-imitating, processimitating, and descriptive approaches, Water Resour. Res., 32, 2617-2658.
  •  
  • 14. Liu, Y., 2006, Using the Snesim program for multiple-point statistical simulation, Comput. Geosci., 32, 1544-1563.
  •  
  • 15. Park, E., 2010, A multidimensional generalized coupled Markov chain model for surface and subsurface characterization, Water Resour. Res., 46, W11509.
  •  
  • 16. Park, E., Elfeki, A.M.M., Song, Y., and Kim, K., 2007, Generalized coupled Markov chain model for characterizing categorical variables in soil mapping, Soil Sci. Soc. Am. J., 71, 909-917.
  •  
  • 17. Remy, N., Alexandre, B., and Jianbing, W., 2009, Applied Geostatistics with SGeMS, Cambridge University Press, Cambridge, 264 p.
  •  
  • 18. Strebelle, S., 2000, Sequential simulation drawing structures from training images, Ph.D. thesis, Stanford University, USA, 187 p.
  •  
  • 19. Strebelle, S., 2002, Conditional simulation of complex geological structures using multiple-point statistics, Math. Geol., 34(1), 1-22.
  •  
  • 20. Walker, R.G., 1976, Facies models, 3. sandy fluvial systems, Geosci. Can., 3, 101-109.
  •  

This Article

  • 2014; 19(4): 31-44

    Published on Aug 31, 2014

  • 10.7857/JSGE.2014.19.4.031
  • Received on Apr 3, 2014
  • Revised on Aug 5, 2014
  • Accepted on Aug 5, 2014

Correspondence to

  • E-mail: