Torrefaction and Hydrothermal Carbonization (HTC) of Dead Leaves
Saqib, Najam Ul;Park, Seong-Kyu;Lee, Jai-Young;
Department of Environmental Engineering, the University of Seoul;KOFIRST R&D Center, KF E&E Co. Ltd.;Department of Environmental Engineering, the University of Seoul;
References
1. Basu, P., Sadhukhan, A.K., Gupta, P., Rao, S., Dhungana, A., and Acharya, B., 2014, An Experimental and theoretical investigation on torrefaction of a large wet wood particle, Bioresour Technol., 159, 215-22.
2. Berge, N.D., Ro, K.S., Mao, J., Flora, J.R.V., Chappel, M., and Bae, S., 2011, Hydrothermal carbonization of municipal waste streams, Environmental Science and Technology, 45, 5696-5703.
3. Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., and Ro, K.S., 2012, Impact of pyrolysis temperature and manure source on physicochemical characteristics of Biochar, Bioresour. Technol., 107, 419428.
4. Demirbas, A., 2005, Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues, Prog Energy Combust., 31, 171-92.
5. Gaskin, J.W., Stener, C., Haris, K., Das, K.C., and Bibens, B., 2008, Effect of low-temperature pyrolysis conditions on biochar for agricultural use, Transactions of the Asabe., 51, 2061-2069.
6. Guo, Y.P. and Rockstraw, D.A., 2007, Activated carbons prepared from rice hull by one-step phosphoric activation, Microporous Mesoporous Matter., 100, 12-19.
7. Hoekman, S.K., Broch, A., and Robbins, C., 2011, Hydrothermal carbonization (HTC) of Lignocellulosic biomass, Energy Fuel., 25, 1802-1810.
8. Inoue, S., Hanaoka, H., and Minowa, T., 2002, Hot compressed water treatment for production of charcoal from wood, J Chem Jpn., 35, 1020-1023.
9. Khan, A., De, J.W., Jansens, P., and Spliethoff, H., 2009, Biomass combustion in fluidized bed boilers: potential problems and remedies, Fuel Process Technol., 90, 21-50.
10. Lee, Y., Park, J., Ryu, C., Gang, K.S., Yang, W., Park, Y.K., Jung, J., and Hyun, S., 2013, Comparison of Biochar properties from biomass residues produced by slow pyrolysis at $500^{\circ}C$, Bioresource Technology., 148, 196-201.
11. Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, M.M., Titirici, C., Fuhner, O., Bens, J., Kern., and Emmerrich, K.H., 2011, Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, Processes and Applications of Wet and Dry Pyrolysis Biofuels., 2, 71-106.
12. Lui, Z. and Balasubramanian, R., 2012, Hydrothermal carbonization of waste biomass for energy generation, Procedia Environmental Sciences, 16, 159-166.
13. Luterbacher, J.K., Froling, M., Vogel, F., Marechal, F., and Tester, J.W., 2008, Hydrothermal gasification of waste biomass: process design and life cycle assessment, Environ Sci Techn., 43, 1578-83.
14. Lyam, J.G., Coronella, C.J., Yan, W., Reza, M.T., and Vasquez, V.R., 2011, Acetic acid and lithium choride effects on hydrothermal carbonization of Lignocellulosic biomass, Bioresour Technol., 102, 6192-6199.
15. Madhura, S., Ajay, K., Jaya, S.T., Krushna, N.P., and Danielle, D.B., 2014, Gasification performance of switchgrass pretreated with torrefaction and densification, Applied Energy., 127, 194-201.
16. Mafakheri, F. and Nasiri, F., 2014, Modeling of biomass-toenergy supply operations: Applications, Challenges and research directions, Energy Policy., 67, 116-126.
17. Mark, J.P., Krzysztof, J.P., and Frans, J.J.G., 2006, Torrefaction of wood part 1 weight loss kinetics, Journal of Analytical and Applied Pyrolysis., 77, 28-34.
18. Nanda, S., Mohammad, J., Reddy, S.N., Kozinski, J.A., and Dalai, A.K., 2013, Pathways of lignocellulosic biomass conversion to renewable fuels, Biomass Conv. Bioref., DOI 10.1007/s13399-013-0097.
19. Nobusuke, K., Nobuhiko, O., Ayumu, H., Toyoyuki, S., Jun, K., Shigenobu, H., Yoshinori, I., and Shigekatsu, M., 2009, Characteristics of solid residues obtained from hot compressed water treatment of woody biomass, Industrial and Engineering Chemistry Research., 48, 373-379.
20. Oliveira, I., Dennis, B., and Hans, G.R., 2013, Hydrothermal carbonization of agricultural residue, Bioresour Technol., 142, 138-146.
21. Pala, M., Kantarli, I.C., Buyukisik, H.B., and Yanik, J., 2014, Hydrothermal carbonization and torrefaction of grape pomace, Bioresour Technol., 161, 255-62.
22. Peter McKendry., 2002, Energy production from biomass (part 1): overview of biomass, Bioresour Technol., 83, 37-46.
23. Rouquerol, F., Rouquerol, I., and Sing K., 1999, Adsorption by powders and porous solids, Academic Press, London, UK, 13 p.
24. Singh, R., Shukla, A., Tiwari, S., and Srivastava, M., 2014, A review on delignification on Lignocellulosic biomass for enhancement of ethanol production potential, Renewable and Sustainable Energy Reviews., 32, 713-728.
25. Stelta, V.D., Gerhauserb, H., Kielb, J.H.A., and Ptasinski, K.J., 2011, Biomass upgrading by torrefaction for the production of biofuel: a review, Biomass Bioenergy 35, 3748-3762.
26. Theis, J.K. and Rilling, M.C., 2009, Characteristics of Biochar: Biological properties, Biochar for environmental management sciences and technology, Earthscan London, UK, 85p.
27. Toufiq, M.R., Joan, G., Lynam, M., Helal, U., and Coronella, J., 2013, Hydrothermal carbonization: Fate of inorganics, Biomass and Bioenergy., 49, 86-94.
28. Yan, W., Tapas, C.A., Coronella, C.J., and Victor, R.V., 2009, Thermal pretreatment of Lignocellulosic biomass, Environmental Progress and Sustainable Energy., DOI: 10.1002/ep.10385.
29. Yong-sung, K., Yoon, Y.K., Kim, C.H., and Giersdorf, J., 2012, Status of biogas technologies and policies in South Korea, Renewable and Sustainable Energy Review., 16, 3430-3438.
30. Yuan, J.H., Xu, R.K., and Zhang, H., 2011, The forms of alkalis in the biochar produced from crop residues at different temperatures, Bioresource Technology., 102, 3488-3497.
31. Zhang, J. and Changfu, Y., 2013, Water holding capacity and absorption properties of wood chars, Energy and Fuels., 27, 2643-2648.