• Bioremediation of Heavy Metal Contaminated Mine Wastes using Urease Based Plant Extract
  • Roh, Seung-Bum;Park, Min-Jeong;Chon, Chul-Min;Kim, Jae-Gon;Song, Hocheol;Yoon, Min-Ho;Nam, In-Hyun;
  • Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM);Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM);Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM);Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM);Department of Environment and Energy, Sejong University;Department of Bio Environmental Chemistry, Chungnam National University;Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM);
  • 요소분해효소 기반 식물추출액을 이용한 광산폐기물 내 중금속 오염 저감
  • 노승범;박민정;전철민;김재곤;송호철;윤민호;남인현;
  • 한국지질자원연구원 지구환경연구본부 환경지질연구실;한국지질자원연구원 지구환경연구본부 환경지질연구실;한국지질자원연구원 지구환경연구본부 환경지질연구실;한국지질자원연구원 지구환경연구본부 환경지질연구실;세종대학교 공과대학 환경에너지융합학과;충남대학교 농업생명과학대학 환경생물화학과;한국지질자원연구원 지구환경연구본부 환경지질연구실;
References
  • 1. Bachmeier, K.L., Williams, A.E., Warmington, J.R., and Bang, S.S., 2002, Urease activity in microbiologically-induced calcite precipitation, J. Biotechnol., 93, 171-181.
  •  
  • 2. Bradford, M.M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 72, 248-254.
  •  
  • 3. Burbank, M.B., Weaver, T.J., Williams, B.C., and Crawford R.L., 2012, Urease activity of ureolytic bacteria isolated from six soils in which calcite was precipitated by indigenous bacteria, Geomicrobiol. J., 29, 389-395.
  •  
  • 4. Choi, J.W., Yoo, K.J., Koo, M.S., and Park, J.H., 2012, Comparison of heavy metal pollutant exposure and risk assessments in an abandoned mine site, J. Korean Soc. Civ. Eng., 32, 261-266.
  •  
  • 5. Choo, C.O., Jeong, G.C., and Lee, J.K., 2007, Characteristics of the Dalseong acid mine drainage and the role of Schwertmannite, J. Eng. Geol., 17, 187-196.
  •  
  • 6. De Muynck, W., De Belie, N., and Verstraete, W., 2010, Microbial carbonate precipitation in construction materials: A review, Ecol. Eng., 36, 118-136.
  •  
  • 7. Ji, S.W. and Cheong, Y.W., 2005, Experiment of reactive media selection for the permeable reactive barrier treating groundwater contaminated by acid mine drainage, J. Econ. Environ. Geol., 38, 237-245.
  •  
  • 8. Jung, M.C., Jung, M.Y., and Choi, Y.W., 2004, Environmental assessment of heavy metals around abandoned metalliferous mine in Korea, J. Econ. Environ. Geol., 37, 21-33.
  •  
  • 9. Jung, M.C. and Jung, M.Y., 2006, Evaluation and management method of environmental contamination from abandoned metal mines in Korea, J. Korean Soc. Miner. Energ. Resour. Eng., 43, 383-394.
  •  
  • 10. Kang, S.H., Ahn, J.Y., Hwang, K.Y., Seo, J.Y., Kim, J.G., Song, H.C., Yim, S.B., and Hwang, I.S., 2011, Stabilization of heavy metal-contaminated mine tailings using phosphate fertilizers and red mud, J. Soil Groundw. Environ., 16, 31-41.
  •  
  • 11. Kim, J.K., 2010, Heavy metal concentrations in soils and crops in the Poongwon mine area, J. Korean Geoenviron. Soc., 11, 5-11.
  •  
  • 12. Labana, S., Singh, O.V., Basu, A., Pandey, G., and Jain, R.K., 2005, A microcosm study on bioremediation of p-nitrophenolcontaminated soil using Arthrobacter protophormiae RKJ100, Appl. Microbiol. Biotechnol., 68, 417-424.
  •  
  • 13. Lee, J.S. and Chon, H.T., 2004, Human risk assessment of toxic heavy metals around abandoned metal mine sites, J. Econ. Environ. Geol., 37, 73-86.
  •  
  • 14. Li, L., Qian, C., Cheng, L., and Wang, R., 2010, A laboratory investigation of microbe-inducing CdCO3 precipitate treatment in Cd2+ contaminated soil, J. Soil Sediment., 10, 248-254.
  •  
  • 15. McConnaughey, T.A. and Whelan, J.F., 1997, Calcification generates protons for nutrient and bicarbonate uptake, Microbiol. Rev., 42, 95-117.
  •  
  • 16. Mine Reclamation Corporation, 2012, 2012 Yearbook of Mireco statistics.
  •  
  • 17. Mobley, H.L. and Hausinger, R.P., 1989, Microbial ureases: Significance, regulation, and molecular characterization, Microbiol. Rev., 53, 85-108.
  •  
  • 18. Nam, I.H., Kim, Y.M., Schmidt, S., and Chang, Y.S., 2006, Biotransformation of 1,2,3-tri- and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin by Sphingomonas wittichii strain RW1, Appl. Environ. Microbiol., 72, 112-116.
  •  
  • 19. Nam, I.H., Kim, Y.M., Murugesan, K., Jeon, J.R., Chang, Y.Y., and Chang, Y.S., 2008, Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst, J. Hazard. Mater., 157, 114-121.
  •  
  • 20. Nam, I.H., Chon, C.M., and Kim, J.G., 2012, Heavy metal effects on the biodegradation of fluorene by Sphingobacterium sp. KM-02 in liquid medium, J. Soil Groundw. Environ., 16, 74-81.
  •  
  • 21. Park, B.Y., Uh, Y.W., Yang, S.Y., Jang, S.M., Kim, J.H., and Lee, D.H., 2001, A study on the acidification of soils, J. Korean Environ. Sci. Soc., 10, 305-310.
  •  
  • 22. Park, S.S., Kim, W.J., and Lee, J.C., 2011, Effect of biomineralization on the strength of cemented sands, J. Korean Geotech. Soc., 27, 75-84.
  •  
  • 23. Riddles, P.W., Whan, V., Blakeley, R.L., and Zerner, B., 1991, Cloning and sequencing of a jack bean urease-encoding cDNA, Gene, 108, 265-267.
  •  
  • 24. Sondi, I. and Salopek-Sondi, B., 2005, Influence of the primary structure of enzymes on the formation of CaCO3 polymorphs: A comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases, Langmuir, 21, 8876-8882.
  •  
  • 25. Yun, S.W., Kang, S.I., Jin, H.G., Kim, H.J., Lim, Y.C., Yi, J.M., and Yu, C., 2011, An investigation of treatment effects of limestone and steel refining slag for stabilization of arsenic and heavy metal in the farmland soils nearby abandoned metal mine, Korean J. Soil Sci. Fertil., 44, 734-744.
  •  

This Article

  • 2015; 20(1): 56-64

    Published on Feb 28, 2015

  • 10.7857/JSGE.2015.20.1.056
  • Received on Dec 24, 2014
  • Revised on Jan 21, 2015
  • Accepted on Jan 21, 2015

Correspondence to

  • E-mail: