• Optimization of As Bioleaching by Herbaspirillum sp. GW103 Coupled with Coconut Oil Cake
  • Govarthanan, Muthusamy;Praburaman, Loganathan;Kim, Jin-Won;Oh, Sae-Gang;Kamala-Kannan, Seralathan;Oh, Byung-Taek;
  • Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University;Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University;Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University;Mine Reclamation Corp.;Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University;Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University;
References
  • 1. Achal, V., Pan, X., Fu, Q., and Zhang, D., 2012, Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli, J. Hazard. Mater., 201, 178-184.
  •  
  • 2. Arshadi, M. and Mousavi, S., 2014, Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: Statistical evaluation and optimization, Bioresour. Technol., 174, 233-242.
  •  
  • 3. Aung, K.M.M. and Ting, Y.-P., 2005, Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger, J. Biotechnol., 116(2), 159-170.
  •  
  • 4. Bajestani, M.I., Mousavi, S., and Shojaosadati, S., 2014, Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: Statistical evaluation and optimization, Sep. Purif. Technol., 132, 309-316.
  •  
  • 5. Biswas, S., Chakraborty, S., Chaudhuri, M.G., Banerjee, P.C., Mukherjee, S., and Dey, R., 2014, Optimization of process parameters and dissolution kinetics of nickel and cobalt from lateritic chromite overburden using organic acids, J. Chem. Technol. Biotechnol., 89(10), 1491-1500.
  •  
  • 6. Bosecker, K., 2001, Microbial leaching in environmental clean-up programmes, Hydrometallurgy, 59(2), 245-248.
  •  
  • 7. Chen, S.-Y. and Lin, J.-G., 2001, Effect of substrate concentration on bioleaching of metal-contaminated sediment, J. Hazard. Mater., 82(1), 77-89.
  •  
  • 8. Chen, S.-Y. and Lin, P.-L., 2010, Optimization of operating parameters for the metal bioleaching process of contaminated soil, Sep. Purif. Technol., 71(2), 178-185.
  •  
  • 9. Chiang, Y.W., Santos, R.M., Monballiu, A., Ghyselbrecht, K., Martens, J.A., Mattos, M.L.T., Van Gerven, T., and Meesschaert, B., 2013, Effects of bioleaching on the chemical, mineralogical and morphological properties of natural and wastederived alkaline materials, Miner. Eng., 48, 116-125.
  •  
  • 10. Deng, X., Chai, L., Yang, Z., Tang, C., Tong, H., and Yuan, P., 2012, Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1, J. Hazard. Mater., 233, 25-32.
  •  
  • 11. Govarthanan, M., Lee, G.-W., Park, J.-H., Kim, J.S., Lim, S.-S., Seo, S.-K., Cho, M., Myung, H., Kamala-Kannan, S., and Oh, B.-T., 2014a, Bioleaching characteristics, influencing factors of Cu solubilization and survival of Herbaspirillum sp. GW103 in Cu contaminated mine soil, Chemosphere, 109, 42-48.
  •  
  • 12. Govarthanan, M., Lee, K.-J., Cho, M., Kim, J.S., Kamala-Kannan, S., and Oh, B.-T., 2013, Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings, Chemosphere, 90(8), 2267-2272.
  •  
  • 13. Govarthanan, M., Lee, S.-M., Kamala-Kannan, S., and Oh, B.-T., 2015, Characterization, real-time quantification and in silico modeling of arsenate reductase (arsC) genes in arsenic-resistant Herbaspirillum sp. GW103, Res. Microbiol., DOI: http://dx.doi.org/10.1016/j.resmic. 2015.02.007.
  •  
  • 14. Govarthanan, M., Park, S.-H., Kim, J.-W., Lee, K.-J., Cho, M., Kamala-Kannan, S., and Oh, B.-T., 2014b, Statistical optimization of alkaline protease production from brackish environment Bacillus sp. SKK11 by SSF using horse gram husk, Prep. Biochem. Biotechnol., 44(2), 119-131.
  •  
  • 15. Govarthanan, M., Selvankumar, T., Selvam, K., Sudhakar, C., and Kamala-Kannan, S., 2014c, Response surface methodology optimization of keratinase production from alkali-treated feather waste and horn meal using Bacillus sp. MG-MASC-BT, J. Ind. Eng. Chem., DOI: http://dx.doi.org/10.1016/j.jiec.2014.12.022.
  •  
  • 16. Lee, E., Han, Y., Park, J., Hong, J., Silva, R.A., Kim, S., and Kim, H., 2015, Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans, J. Environ. Manage., 147, 124-131.
  •  
  • 17. Lee, G.W., Lee, K.-J., and Chae, J.-C., 2012, Genome sequence of Herbaspirillum sp. strain GW103, a plant growth-promoting bacterium, J. Bacteriol., 194(15), 4150-4150.
  •  
  • 18. Liu, H.-L., Lan, Y.-W., and Cheng, Y.-C., 2004, Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology, Proc. Biochem., 39(12), 1953-1961.
  •  
  • 19. Mishra, D., Kim, D.J., Ralph, D.E., Ahn, J.G., and Rhee, Y.H., 2008, Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect, J. Hazard. Mater., 152(3), 1082-1091.
  •  
  • 20. Mulligan, C.N. and Galvez-Cloutier, R., 2003, Bioremediation of metal contamination, Environ. Monit. Assess., 84(1-2), 45-60.
  •  
  • 21. Prakash, O., Talat, M., Hasan, S., and Pandey, R.K., 2008, Factorial design for the optimization of enzymatic detection of cadmium in aqueous solution using immobilized urease from vegetable waste, Bioresour. Technol., 99(16), 7565-7572.
  •  
  • 22. Rulkens, W.H., Grotenhuis, J.T.C., and Tichý, R., 1995, Methods for cleaning contaminated soils and sediments, Heavy metals. in: W. Salomons, U. FD orstner, P. Mader (Eds.), Heavy Metals, Springer-Verlag, Berlin, 1995, pp. 151-191.
  •  
  • 23. Selvam, K., Govarthanan, M., Kamala-Kannan, S., Govindharaju, M., Senthilkumar, B., Selvankumar, T., and Sengottaiyan, A., 2014, Process optimization of cellulase production from alkalitreated coffee pulp and pineapple waste using Acinetobacter sp. TSK-MASC, Roy. Soc. Chem. Adv., 4(25), 13045-13051.
  •  
  • 24. Xu, T.-J. and Ting, Y.-P., 2004, Optimisation on bioleaching of incinerator fly ash by Aspergillus niger-use of central composite design, Enzyme Microb. Technol., 35(5), 444-454.
  •  
  • 25. Yang, J.E., Ok, Y.S., Kim, W.I., and Lee, J.S., 2008, Heavy metal pollution, risk assessment and remediation in paddy soil environment: research and experiences in Korea. In: Sanchez, M.L. (Ed.), Cause and Effects of Heavy Metal Pollution, Nova Science Publishers, New York.
  •  

This Article

  • 2015; 20(2): 47-54

    Published on Apr 30, 2015

  • 10.7857/JSGE.2015.20.2.047
  • Received on Apr 10, 2015
  • Revised on Apr 24, 2015
  • Accepted on Apr 27, 2015

Correspondence to

  • E-mail: