• Investigation of Synthesis and Antibacterial Properties of a Magnetically Reusable Fe3O4-ACCS-Ag Nanocomposite
  • Shim, Jaehong;Kim, Hea-Won;Kim, Jin-Won;Seo, Young-Seok;Oh, Sae-Gang;Cho, Min;Park, Junghee;Oh, Byung-Taek;
  • School of Natural Resources, University of Nebraska-Lincoln;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;Mine Reclamation Corp.;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;
  • 재사용이 가능한 나노복합재료 Fe3O4-ACCS-Ag의 제조 및 항균 특성 평가
  • 심재홍;김해원;김진원;서영석;오세강;조민;박정희;오병택;
  • 네브라스카 주립대학 천연자원학부;전북대학교 생명공학부;전북대학교 생명공학부;전북대학교 생명공학부;한국광해관리공단;전북대학교 생명공학부;전북대학교 생명공학부;전북대학교 생명공학부;
References
  • 1. Akhavan, O., 2009, Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation, J. Coll. Interf. Sci., 336(1), 117-124.
  •  
  • 2. Amarjargal, A., Tijing, L.D., Im, I.T., and Kim, C.S., 2013, Simultaneous preparation of Ag/Fe3O4 core-shell nanocomposites with enhanced magnetic moment and strong antibacterial and catalytic properties, Chem. Eng. J., 226, 243-254.
  •  
  • 3. Chang, Q., He, H., and Ma, Z., 2008, Efficient disinfection of Escherichia coli in water by silver loaded alumina, J. Inorg. Biochem., 102(9), 1736-1742.
  •  
  • 4. Chamakura, K., Perez-Ballestero, R., Luo, Z., Bashir, S., and Liu, J., 2011, Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants, Coll. Surf. B: Biointer., 84(1), 88-96.
  •  
  • 5. Cho, M., Chung, H.M., Choi, W.Y., and Yoon, J.Y., 2004, Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, Wat. Res., 38, 1069-1077.
  •  
  • 6. Deng, Y.H., Wang, C.C., Hu, J.H., Yang, W.L., and Fu, S.K., 2005, Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach, Coll. Surf. A: Physicochem, Eng. Asp., 262(1), 87-93.
  •  
  • 7. Fan, Z., Senapati, D., Khan, S.A., Singh, A.K., Hamme, A., Yust, B., Sardar, D., and Ray, P.C., 2013, Popcorn-Shaped Magnetic Core-Plasmonic Shell Multifunctional Nanoparticles for the Targeted Magnetic Separation and Enrichment, Label-Free SERS Imaging, and Photothermal Destruction of Multidrug-Resistant Bacteria, Chem. Eur. J., 19(8), 2839-2847.
  •  
  • 8. He, D., Ikeda-Ohno, A., Boland, D.D., and Waite, T.D., 2013, Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash, Environ. Sci. Technol., 47(10), 5276-5284.
  •  
  • 9. Jeon, H.J., Yi, S.C., and Oh, S.G., 2003, Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method, Biomaterials, 24(27), 4921-4928.
  •  
  • 10. Jin, X., Li, M., Wang, J., Marambio-Jones, C., Peng, F., Huang, X., and Hoek, E.M., 2010, High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions, Environ. Sci. Tech., 44(19), 7321-7328.
  •  
  • 11. Kalapathy, U., Proctor, A., and Shultz, J., 2000, A simple method for production of pure silica from rice hull ash, Bioresour. Technol., 73(3), 257-262.
  •  
  • 12. Kim, S.H., Lee, H.S., Ryu, D.S., Choi, S.J., and Lee, D.S., 2011, Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli, Kor. J. Microbiol. Biotechnol., 39(1), 77-85.
  •  
  • 13. Landeen, L.K., Yahya, M.T., and Gerba, C.P., 1989, Efficacy of copper and silver ions and reduced levels of free chlorine in inactivation of Legionella pneumophila, Appl. Environ. Microbial., 55(12), 3045-3050.
  •  
  • 14. Liria, C.W., Ungaro, V.A., Fernandes, R.M., Costa, N.J., Marana, S.R., Rossi, L.M., and Machini, M.T., 2014, Synthesis, properties, and application in peptide chemistry of a magnetically separable and reusable biocatalyst, J. Nanopart. Res., 16(11), 1-13.
  •  
  • 15. Liu, J., Lee, J.B., Kim, D.H., and Kim, Y., 2007, Preparation of high concentration of silver colloidal nanoparticles in layered laponite sol, Coll. Surf. A: Physicochem, Eng. Asp., 302(1), 276-279.
  •  
  • 16. Mpenyana-Monyatsi, L., Mthombeni, N.H., Onyango, M.S., and Momba, M.N., 2012, Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater, Int. J. Environ. Res. Pub. He., 9(1), 244-271.
  •  
  • 17. Naik, B., Desai, V., Kowshik, M., Prasad, V.S., Fernando, G.F., and Ghosh, N.N., 2011, Synthesis of Ag/AgCl-mesoporous silica nanocomposites using a simple aqueous solution-based chemical method and a study of their antibacterial activity on E. coli, Particuology, 9(3), 243-247.
  •  
  • 18. Quang, D.V., Sarawade, P.B., Hilonga, A., Kim, J.K., Chai, Y.G., Kim, S.H., Ryu, J.Y., and Kim, H.T., 2011, Preparation of amino functionalized silica micro beads by dry method for supporting silver nanoparticles with antibacterial properties, Coll. Surf. A: Physicochem. Eng. Asp., 389(1), 118-126.
  •  
  • 19. Rai, M.K., Deshmukh, S.D., Ingle, A.P., and Gade, A.K., 2012, Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria, J. Appl. Microbiol., 112(5), 841-852.
  •  
  • 20. Sanpui, P., Murugadoss, A., Prasad, P.D., Ghosh, S.S., and Chattopadhyay, A., 2008, The antibacterial properties of a novel chitosan-Ag-nanoparticle composite, Int. J. Food Microbial., 124(2), 142-146.
  •  
  • 21. Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., and Dash, D., 2007, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology, 18(22), 1-9.
  •  
  • 22. Wang, J.X., Wen, L.X., Wang, Z.H., and Chen, J.F., 2006, Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects, Mater. Chem. Pphysic., 96(1), 90-97.
  •  
  • 23. Wu, C.S. and Liao, H.T., 2011, Antibacterial activity and antistatic composites of polyester/Ag-SiO2 prepared by a sol-gel method, J. Appl. Polym. Sci., 121(4), 2193-2201.
  •  
  • 24. Yanagisawa, N., Fujimoto, K., Nakashima, S., Kurata, Y., and Sanada, N., 1997, Micro FT-IR study of the hydration-layer during dissolution of silica glass, Geochim. Cosmochim. Acta, 61(6), 1165-1170.
  •  
  • 25. Yoon, K.Y., Hoon Byeon, J., Park, J.H., and Hwang, J., 2007, Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Sci. Total Environ., 373(2), 572-575.
  •  
  • 26. Zhang, L., Yu, J.C., Yip, H.Y., Li, Q., Kwong, K.W., Xu, A.W., and Wong, P.K., 2003, Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities, Langmuir, 19(24), 10372-10380.
  •  
  • 27. Zhang, W., Yao, Y., Sullivan, N., and Chen, Y., 2011a, Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics, Environ. Sci. Technol., 45(10), 4422-4428.
  •  
  • 28. Zhang, X., Niu, H., Yan, J., and Cai, Y., 2011b, Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity, Coll. Surf. A: Physicochem. Eng. Asp., 375(1), 186-192.
  •  

This Article

  • 2015; 20(3): 25-33

    Published on Jun 30, 2015

  • 10.7857/JSGE.2015.20.3.025
  • Received on Dec 29, 2014
  • Revised on Mar 27, 2015
  • Accepted on Apr 15, 2015

Correspondence to

  • E-mail: