• A Development of Markov Chain Monte Carlo History Matching Technique for Subsurface Characterization
  • Jeong, Jina;Park, Eungyu;
  • Department of Geology, Kyungpook National University;Department of Geology, Kyungpook National University;
  • 지하 불균질 예측 향상을 위한 마르코프 체인 몬테 카를로 히스토리 매칭 기법 개발
  • 정진아;박은규;
  • 경북대학교 지질학과;경북대학교 지질학과;
References
  • 1. Bertino, L., Evensen, G., and Wackernagel, H., 2002, Combinin geostatistics and Kalman filtering for data assimilation in an estuarine system, Institute of Physics Publishing, 18, 1-23.
  •  
  • 2. Cardiff, M. and Kitanidis, P.K., 2009, Bayesian inversion for facies detection: an extensible level set framework, Water Resour. Res., 45(10), W10416, doi:10.1029/2008WR007675.
  •  
  • 3. Chen, Y. and Zhang, D., 2006, Data assimilation for transient flow in geologic formations via ensemble Kalman filter, Adv. Water Resour., 29, 1107-1122.
  •  
  • 4. Chen, Y., Oliver, D.S., and Zhang, D., 2009, Data assimilation for nonlinear problems by ensemble Kalman filter with reparameterization, J. Pet. Sci. Eng., 66, 1-14.
  •  
  • 5. Deutsch, C.V. and Journel, A.G., 1998, GSLIB: Geostatistical Software Library and User’s Guide, 2nd edition, Oxford University Press., New York, 369p.
  •  
  • 6. Deutsch, C.V. and Tran, T.T., 2002, FLUVSIM:a program for object-based stochastic modeling of fluvial depositional systems, Comput. Geosci., 28, 525-535.
  •  
  • 7. Efendiev, Y., Datta-Gupta, A., Ma, X., and Mallick, B., 2009, Efficient sampling techniques for uncertainty quantification in history matching using nonlinear error models and ensemble level upscaling techniques, Water Resour. Res., 45(11), W11414, doi:10.1029/2008WR007039.
  •  
  • 8. Ezzedine, S., Rubin, Y., and Chen, J., 1999, Bayesian method for hydrogeological site characterization using borehole and geophysical survey data: Theory and application to the Lawrence Livermore National Laboratory Superfund site, c, 35(9), 2671-2683.
  •  
  • 9. Fu, J. and Gomez-Hernanez, J.J., 2009, A blocking Markov chain monte carlo method for inverse stochastic hydrogeological modeling, Math. Geosci., 41, 105-128.
  •  
  • 10. He, Z., Yoon, S., and Datta-Gupta, A., 2002, Streamline-based production data integration with gravity and changing field conditions, SPE J., 7(4), 423-436, doi:10.2118/81208-PA.
  •  
  • 11. Hill, M.C., Harbaugh, A.W., Banta, E.R., McDonald, M.G., MODFLOW-2000, 2000, The U.S. geological survey modular ground-water model-user guide to modularization concepts and the ground-water flow process, U.S. Geological Survey, Reston, Virginia, 113p.
  •  
  • 12. Hu, L.Y. and Chugunova, T., 2008, Multiple-point geostatistics for modeling subsurface heterogeneity: A comprehensive review, Water Resour. Res., 44(11), W11413.
  •  
  • 13. Hyndman, D.W., Harris, J.M., and Gorelick, S.M., 1994, Coupled seismic and tracer test inversion for aquifer property characterization, Water Resour. Res., 30(7), 1965-1977.
  •  
  • 14. Jeong, J., Park, E., Han, W.S., and Kim, K.-Y., 2014, A novel data assimilation methodology for predicting lithology based on sequence labeling algorithms, J. Geophys. Res. Solid Earth, 119, 7503-7520.
  •  
  • 15. Kitanidis, P.K., 1995, Quasi-linear geostatistical theory for inversing, Water Resour. Res., 31(10), 2411-2419.
  •  
  • 16. Kitanidis, P.K., 2015, Compressed state Kalman filter for large systems, Adv. Water Resour., 76, 120-126.
  •  
  • 17. Kretz, V., Ravalec-Dupin, M.L., and Roggero, F., 2004, An integrated reservoir characterization study matching production data and 4D seismic, SPE J., 7(2), 116-122, doi:10.2118/88033-PA.
  •  
  • 18. Mariethoz, G., Renard, P., Cornaton, F., and Jaquet, O., 2009, Truncated plurigaussian simulations to characterize aquifer heterogeneity, Ground Wate., 47(1), 13-24.
  •  
  • 19. Mariethoz, G., Renard, P., and Caers, J., 2010, Bayesian inverse problem and optimization with iterative spatial resampling, Water Resour. Res., 46, W11530, doi:10.1029/2010WR009274.
  •  
  • 20. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., 1953, Equations of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1091.
  •  
  • 21. Murakami, H., Chen, X., Hahn, M.S., Liu, Y., Rockhold, M.L., Vermeul, V.R., Zachara, J.M., and Rubin, Y., 2010, Bayesian approach for three-dimensional aquifer characterization at the Hanford 300 Area, Hydrol. Earth Syst. Sci., 14, 1989-2001, doi:10.5194/hess-14-1989-2010.
  •  
  • 22. Oliver, D.S., Cunha, L.B., and Reynolds, A.C., 1997, Markov chain Monte Carlo methods for conditioning a permeability field to pressure data, Math. Geosci., 29(1), 61-91.
  •  
  • 23. Pesti, G., Bogardi, I., Kelly, W.E., and Kalinski, R., 1993, Cokriging of geoelectric and well data to define aquifer properties, Ground wate., 31(6), 905-912, doi:10.111/j.1745-6584. 1993.tb00863.x.
  •  
  • 24. Reichle, R.H., McLaughlin, D.B., and Entekhabi, D., 2002, Hydrologic data assimilation with the ensemble Kalman filter, Am. Meteorol. Soc., 130, 103-114.
  •  
  • 25. Rubin, Y., Chen, X., Murakami, H., and Hahn, M., 2010, A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields, Water Resour. Res., 46(10), W10523, doi:10.1029/2009WR008799.
  •  
  • 26. Shin, Y., Jeong, H., and Choe, J., 2010, Reservoir characterization using an EnKF and a non-parametric approach for highly non-Gaussain permeability fields, Energy Sources, Part A: Recovery, Util. Environ. Effectes, 32(16), 1569-1578.
  •  
  • 27. Strebelle, S., 2000, Sequential simulation drawing structures from training images, Ph.D. thesis, Stanford University, USA, 187p.
  •  
  • 28. Strebelle, S., 2002, Conditional simulation of complex geological structures using multiple-point statistics, Math. Geol., 34(1), 1-22.
  •  
  • 29. Will, R., Archer, R., and Dershowitz, B., 2005, Integration of seismic anisotropy and reservoir-performance data for characterization of naturally fractured reservoirs using discrete-featurenetwork models, SPE J., 8(2), 132-142, doi:10.2118/84412-PA.
  •  
  • 30. Yoon, S., Malallah, A.H., Datta-Gupta, A., Vasco, D.W., and Behrens, R.A., 2001, A multiscale approach to production-data integration using streamline models, SPE J., 6(2), 182-192, doi:10.2118/71313-PA.
  •  
  • 31. Zhou, H., Gomez-Hernandez, J.J., Franssen, H.-J.H., and Li, L., 2011, An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering, Adv. Water Resour., 34, 844-864.
  •  
  • 32. Zhou, H., Li, L., Franssen, H.-J.H., and Gomez-Hernandez, J.J, 2012, Patter recognition in a bimodal aquifer using the normalsccore ensemble Kalman filter, Math. Geosci., 44, 169-185.
  •  

This Article

  • 2015; 20(3): 51-64

    Published on Jun 30, 2015

  • 10.7857/JSGE.2015.20.3.051
  • Received on Feb 24, 2015
  • Revised on Mar 28, 2015
  • Accepted on Mar 31, 2015

Correspondence to

  • E-mail: