School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH);School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH);Hyorim Industries Inc.;GS E&C;School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH);
Hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)의 환원적 분해를 위한나노영가철의 성능평가: 회분식 및 칼럼 실험
1. Agrawal, A. and Tratnyek, P.G., 1996, Reduction of nitro aromatic compounds by zero-valent iron metal, Environ. Sci. Technol., 30(1), 153-160.
2. Brannon, J.M., Price, C.B., Yost, S.L., Hayes, C., and Porter, B., 2005, Comparison of environmental fate and transport process descriptors of explosives in saline and freshwater systems, Mar. Pollut. Bull., 50(3), 247-251.
3. Cho, C.-H., Bae, S.-J., and Lee, W.-J., 2012, Enhanced Degradation of TNT and RDX by Bio-reduced Iron Bearing Soil Minerals, Adv. Environ. Res., 1(1), 1-14
4. Cook, S.M., 2009, Assessing the Use and Application of Zero-Valent Iron Nanoparticle Technology for Remediation at Contaminated Sites, US Environmental Protection Agency.
5. Davis, J.L., Wani, A.H., O’Neal, B.R., and Hansen, L.D, 2004, RDX biodegradation column study: comparison of electron donors for biologically induced reductive transformation in groundwater, J. Hazard. Mater., 112(1-2), 45-54.
6. Dombek, T., Dolan, E., Schultz, J., and Klarup, D., 2001, Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions, Environ. Pollut., 111(1), 21-27.
7. Eisentraeger, A., Reifferscheid, G., Dardenne, F., Blust, R., and Schofer, A, 2007, Hazard characterization and identification of a former ammunition site using microarrays, bioassays, and chemical analysis, Environ. Toxicol. Chem., 26(4), 634-646.
8. Gavaskar, A., Tatar, L., and Condit W., 2005, Cost and Performance Report Nanoscale Zero-Valent Iron Technologies for Source Remediation, Cost and Performance Report: Naval Facilities Engineering Service Center: Port Hueneme, CA, 2005.
9. Gong, J., Lee, C.-S., Chang, Y.-Y., and Chang, Y.-S., 2015, Novel self-assembled bimetallic structure of Bi/Fe0 : the oxidative and reductive degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), J. Hazard. Mater., 286, 107-117.
10. Hawari, J., Halasz, A., Groom, C., Deschamps, S., Paquet, L., Beaulieu, C., and Corriveau, A, 2002, Photodegradation of RDX in aqueous solution: A mechanistic probe for biodegradation with Rhodococcus sp., Environ. Sci. Technol., 36(23), 5117-5123.
11. Kaplan, D.L., 1992, Biological degradation of explosives and chemical agents, Curr. Opin. Biotech., 3(3), 253-260.
12. Kim, E.-J., Murugesan, K., Kim, J.-H., Tratnyek, P.G., and Chang, Y.-S., 2013, Remediation of Trichloroethylene by FeS-Coated Iron Nanoparticles in Simulated and Real Groundwater: Effects of Water Chemistry, Ind. Eng. Chem. Res., 52(27), 9343-9350.
13. Koutsospyros, A., Pavlov, J., Fawcett, J., Strickland, D., Smolinski, B., and Braida, W., 2012, Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction, J. Hazard. Mater., 219-220, 75-81.
14. Liu, Y. and Lowry, G.V., 2006, Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination, Environ. Sci. Technol., 40(19), 6085-6090.
15. Lv, X., Hu, Y., Tang, J., Sheng, T., Jiang, G., and Xu, X., 2013, Effects of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe3O4 nanocomposites, Chem. Eng. J., 218, 55-64.
16. Naja, G., Halasz, A., Thiboutot, S., Ampleman, G., and Hawari, J., 2008, Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles, Environ. Sci. Technol., 42(12), 4364-4370.
17. Oh, S.-Y., Cha, D.-K., Kim, B.-J., and Chiu, P.C., 2005, Reductive transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, and methylenedinitramine with elemental iron, Environ. Toxicol. Chem., 24(11), 2812-2819.
18. Oh, S.-Y., Chiu, P.C., Kim, B.-J., and Cha, D.-K., 2003, Enhancing Fenton oxidation of TNT and RDX through pretreatment with zero-valent iron, Water Res., 37(17), 4275-4283.
19. Robidoux, P.Y., Svendsen, C., Caumartin, J., Hawari, J., Ampleman, G., Thiboutot, S., Weeks, J.M., and Sunahara, G.I., 2000, Chronic toxicity of energetic compounds in soil determined using the earthworm (Eisenia andrei) reproduction test, Environ. Toxicol. Chem., 19(7), 1764-1773.
20. Rosenblatt, D.H., Burrows, E.P., Mitchell, W.R., and Parmer, D.L., 1991, Organic Explosives and Related Compounds, The Handbook of Environmental Chemistry, Volume 3, Part G, Hutzinger, O. (Ed.), Springer-Verlag, Berlin.
21. Saleh, N., Kim, H.J., Phenrat, T., Matyjaszewski, K., Tilton, R.D., and Lowry, G.V., 2008, Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns, Environ. Sci. Technol., 42(9), 3349-3355.
22. Sun, Y.-P., Li, X.-Q., Zhang, W.-X., and Wang, H.P., 2007, A method for the preparation of stable dispersion of zero-valent iron nanoparticles, Colloid Surf. A-Physicochem. Eng. Asp., 308(1-3), 60-66.
23. U.S. Army, 1983, Environmental fate studies on certain munitions wastewater constituents: Phase IV-Lagoon model studies.
24. USEPA, 2012, Drinking Water Standards and Health Advisories.
25. Wanaratna, P., Christodoulatos, C., and Sidhoum, M., 2006, Kinetics of RDX degradation by zero-valent iron (ZVI), J. Hazard. Mater., 136(1), 68-74.
26. Wei, Y.-T., Wu, S.-C., Chou, C.-M., Che, C.-H., Tsai, S.-M., and Lien, H.-L., 2010, Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study, Water Res., 44(1), 131-140.
27. Yu, R.-F., Chi, F.-H., Cheng, W.-P., and Chang, J.-C., 2014, Application of pH, ORP, and DO monitoring to evaluate chromium(VI) removal from wastewater by the nanoscale zero-valent iron (nZVI) process, Chem. Eng. J., 255, 568-576.
28. Zhang, W.-X. and Elliott, D.W., 2006, Applications of iron nanoparticles for groundwater remediation, Remediati. J., 16(2), 7-21.