Seoul Center, Korea Basic Science Institute;Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources;Dept. of Civil and Environmental Engineering, Seoul National University;Dept. of Civil and Environmental Engineering, Seoul National University;
1. Abd-Alla, M.H., 1998, Growth and siderophore production in vitro of Bradyrhizobium (Lupin) strains under iron limitation, Eur. J. Soil Biol., 34(2), 99-104.
2. Ahmadpour, P., Ahmadpour, F., Mahmud, T.M.M., Abdu, A., Soleimani, M., and Hosseini Tayefeh, F., 2012, Phytoremediation of heavy metals: A green technology, Afr. J. Biotechnol., 11(76), 14036-14043.
3. Berraho, E.L., Lesueur, D., Diem, H.G., and Sasson, A., 1997, Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium, World J. Microbiol. Biotechnol., 13(5), 501-510.
4. Fayiga, A.O. and Ma, L.Q., 2005, Arsenic uptake by two hyperaccumulator ferns from four arsenic contaminated soils, Water Air Soil Pollut., 168(1-4), 71-89.
5. Gong, P., Hawari, J., Thiboutot, S., Ampleman, G., and Sunahara, G.I., 2001, Ecotoxicological effects of hexahydro-1,3,5-trinitro-1,3,5-triazine on soil microbial activities, Environ. Toxicol. Chem., 20(5), 947-951.
6. Guerinot, M.L., Meidl, E.J., and Plessner, O., 1990, Citrate as a siderophore in Bradyrhizobium japonicum, J. Bacteriol., 172(6), 3298-3303.
7. Im, J., Kim, Y.-J., Yang, K., and Nam, K., 2014, Applicability of soil washing with neutral phosphate for remediation of arseniccontaminated soil at the former Janghang smelter site, J. Soil Groundw. Environ., 19(4), 45-51.
8. Jadia, C.D. and Fulekar, M.H., 2009, Phytoremediation of heavy metals: Recent techniques, Afr. J. Biotechnol., 8(6), 921-928.
9. Jeong, S., Moon, H.S., Shin, D., and Nam, K., 2013, Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil, J. Hazard Mater., 263, 441-449.
10. Jeong, S., Moon, H.S., and Nam, K., 2014, Enhanced uptake and translocation of arsenic in Cretan brake fern (Pteris cretica L.) through siderophore-arsenic complex formation with an aid of rhizospheric bacterial activity, J. Hazard Mater., 280, 536-543.
11. Kim, Y.-H., Kim, D.-H., Jung, H.-B., Hwang, B.-R., Ko, S.-H., and Baek, K., 2012, Pilot scale ex-situ electrokinetic remediation of arsenic-contaminated soil, Separ. Sci. Technol., 47(14-15), 2230-2234.
12. KMOE (Korea Ministry of Environment), 2013, Official Test Methods of Soil Quality, 2013-113/2000000025462.
13. Li, D.-M. and Alexander, M., 1990, Factors affecting co-inoculation with antibiotic-producing bacteria to enhance rhizobial colonization and nodulation, Plant and Soil 129(2), 195-201.
14. Lugtenberg, B. and Kamilova, F., 2009, Plant-Growth-Promoting Rhizobacteria, Annu. Rev. Microbi., 63, 541-556.
15. Nair, A., Juwarkar, A., and Singh, S., 2007, Production and characterization of siderophores and its application in arsenic removal from contaminated soil, Water Air Soil Pollut., 180(1-4), 199-212.
16. National Academy of Agricultural Science, 2010, Soil and nutrient management in agricultural land, 11-1390802-000270-01.
17. Ndema, N.E., Etame, J., Taffouo, V.D., and Bilong, P., 2010, Effects of some physical and chemical characteristics of soil on productivity and yield of cowpea (Vigna unguiculata L. Walp.) in coastal region (Cameroon), Afr. J. Environ. Sci. Technol., 4(3), 108-114.
18. Rural Development Administration, 2011, Manual for improving agricultural income (special purpose crop), 11-1390000-002938-01.
19. Sharma, V.K. and Sohn, M., 2009, Aquatic arsenic: Toxicity, speciation, transformations, and remediation, Environ. Int., 35(4), 743-759.
20. Singh, R., Singh, S., Parihar, P., Singh, V.P., and Prasad, S.M., 2015, Arsenic contamination, consequences and remediation techniques: A review, Ecotox. Environ. Safe., 112, 247-270.
21. SSSA (Soil Science Society of America), 1996, Methods of Soil Analysis, Part 3- chemical methods, Soil Science Society of America Inc. and Americaln Society of Agronomy Inc., Wisconsin, USA.
22. Turner, B.L., 2010, Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils, Appl. Environ. Microbiol., 76(19), 6485-6493.
23. van Veen, J.A., van Overbeek, L.S., and van Elsas, J.D., 1997, Fate and activity of microorganisms introduced into soil, Microbiol. Mol. Biol. Rev., 61(2), 121-135.
24. Visca, P., Colotti, G., Serino, L., Verzili, D., Orsi, N., and Chiancone, E., 1992, Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophoremetal complexes, Appl. Environ. Microbiol., 58(9), 2886-2893.
25. Walkley, A. and Black, I.A., 1934, An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method., Soil Sci., 37(1), 29-38.
26. Wang, Q., Xiong, D., Zhao, P., Yu, X., Tu, B., and Wang, G., 2011, Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17, J. Appl. Microbiol., 111(5), 1065-1074.
27. Wei, C.-Y. and Chen, T.-B., 2006, Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation, Chemosphere, 63(6), 1048-1053.
28. Wenzel, W.W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., and Adriano, D.C., 2001, Arsenic fractionation in soils using an improved sequential extraction procedure, Anal. Chim. Acta., 436(2), 309-323.
29. Wuana, R.A. and Okieimen, F.E., 2011, Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation, ISRN Ecol., 2011, 20.
30. Yang, K., Im, J., Jeong, S., and Nam, K., 2014, Determination of human health risk incorporating experimentally derived site-specific bioaccessibility of arsenic at an old abandoned smelter site, Environ. Res., 137, 78-84.