• The Effect of Liquid Height on Sonochemical Reactions in 74 kHz Sonoreactors
  • Son, Younggyu;
  • Department of Environmental Engineering, Kumoh National Institute of Technology;
  • 74 kHz 초음파 반응기에서 수위 변화에 따른 초음파 화학 반응의 변화
  • 손영규;
  • 국립금오공과대학교 환경공학과;
References
  • 1. Adewuyi, Y.G., 2001, Sonochemistry: Environmental science and engineering applications, Ind. Eng. Chem. Res., 40, 4681-4715.
  •  
  • 2. Asakura, Y., Nishida, T., Matsuoka, T., and Koda, S., 2008, Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors, Ultrason. Sonochem., 15, 244-250.
  •  
  • 3. Cui, M., Son, Y., Lim, M., Na, S., and Khim, J., 2010, Elimination of two hormones by ultrasonic and ozone combined processes, Jpn. J. Appl. Phys., 49, 07HE09.
  •  
  • 4. Esplugas, S., Bila, D.M., Krause, L.G.T., and Dezotti, M., 2007, Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents, J. Hazard. Mater., 149, 631-642.
  •  
  • 5. Gogate, P.R., 2007, Application of cavitational reactors for water disinfection: Current status and path forward, J. Environ. Manage., 85, 801-815.
  •  
  • 6. Lee, J., Ashokkumar, M., Yasui, K., Tuziuti, T., Kozuka, T., Towata, A., and Iida, Y., 2011, Development and optimization of acoustic bubble structures at high frequencies, Ultrason. Sonochem., 18, 92-98.
  •  
  • 7. Mason, T.J. and Lorimer, J.P., 2002, Applied Sonochemistry-The Uses of Power Ultrasound in Chemistry and Processing, Wiley-VCH Verlag GmbH: Weinheim.
  •  
  • 8. Mehrjouei, M., Müller, S., and Möller, D., 2015, A review on photocatalytic ozonation used for the treatment of water and wastewater, Chem. Eng. J., 263, 209-219.
  •  
  • 9. Pétrier, C., Combet, E., and Mason, T., 2007, Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds, Ultrason. Sonochem., 14, 117-121.
  •  
  • 10. Remya, N. and Lin, J.G., 2011, Current status of microwave application in wastewater treatment-A review, Chem. Eng. J., 166, 797-813.
  •  
  • 11. Son, Y., Lim, M., Ashokkumar, M., and Khim, J., 2011, Geometric optimization of sonoreactors for the enhancement of sonochemical activity, J. Phys. Chem. C, 115, 4096-4103.
  •  
  • 12. Son, Y., Lim, M., Khim, J., and Ashokkumar, M., 2012, Attenuation of UV light in large-scale sonophotocatalytic reactors: The effects of ultrasound irradiation and TiO2 concentration, Ind. Eng. Chem. Res., 51, 232-239.
  •  
  • 13. Teo, B.M., Chen, F., Hatton, T.A., Grieser, F., and Ashokkumar, M., 2009, Novel one-pot synthesis of magnetite latex nanoparticles by ultrasound irradiation, Langmuir, 25, 2593-2595.
  •  
  • 14. Torres, R.A., Nieto, J.I., Combet, E., Ptrier, C., and Pulgarin, C., 2008, Influence of TiO2 concentration on the synergistic effect between photocatalysis and high-frequency ultrasound for organic pollutant mineralization in water, Appl. Catal. B-Environ., 80, 168-175.
  •  
  • 15. Yao, P., Choo, K.H., and Kim, M.H., 2009, A hybridized photocatalysis-microfiltration system with iron oxide-coated membranes for the removal of natural organic matter in water treatment: Effects of iron oxide layers and colloids, Wat. Res., 43, 4238-4248.
  •  

This Article

  • 2016; 21(1): 80-85

    Published on Feb 28, 2016

  • 10.7857/JSGE.2016.21.1.080
  • Received on Dec 7, 2015
  • Revised on Dec 11, 2015
  • Accepted on Dec 16, 2015

Correspondence to

  • E-mail: