Future Environmental Research Center, Korea Institute of Toxicology;Future Environmental Research Center, Korea Institute of Toxicology;Future Environmental Research Center, Korea Institute of Toxicology;Department of Civil & Environmental Engineering, Hanyang University;Future Environmental Research Center, Korea Institute of Toxicology;
1. Badawy, A.E., Luxton, T., Silva, R., Scheckel, K., Suidan, M., and Tolaymat, T., 2010, Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions, Environ. Sci. Technol., 44, 1260-1266.
2. Bae, S., Hwang, Y.S., Lee, Y., and Lee, S., 2013, Effects of water chemistry on aggregation and soil adsorption of silver nanoparticles, Environ. Health. Toxicol., 28, 1-7.
3. Benn, T.M. and Westerhoff, P., 2008, Nanoparticle silver released into water from commercially available sock fabrics, Environ. Sci. Technol., 42, 4133-4139.
4. Braun, A., Klumpp, E., Azzam, R., and Neukum, C., 2015, Transport and deposition of stabilized engineered silver nanoparticles in water saturated loamy sand and silty loam, Sci. Total. Environ., 535, 102-112.
5. Chen, K.L. and Elimelech, M., 2007, Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions, J. Colloid. Interf. Sci., 307, 126-134.
6. Cornelis, G., Pang, L., Doolette, C., Kirby, K.J., and McLaughlin, M.J., 2013, Transport of silver nanoparticles in saturated columns of natural soils, Sci. Total. Environ., 463-464, 120-130.
7. Domingos, R.F., Tufenkji, N., and Wilkinson, K.J., 2009, Aggregation of titanium dioxide nanoparticles: Role of a fulvic acid, Environ. Sci. Technol., 43, 1282-1286.
8. Gondikas, A.P., Morris, A., Reinsch, B.C., and Marinakos, S.M., 2012, Cysteine-induced modifications of Zero-valent silver nanomaterials: Implications for particle surface chemistry, aggregation, dissolution, and silver speciation, Environ. Sci. Technol., 46, 7037-7045.
9. Gottschalk, F. and Nowack, B., 2011, The release of engineered nanomaterials to the environment, J. Environ. Monitor., 13, 1145-1155.
10. Huynh, K.A. and Chen, K.L., 2011, Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions, Environ. Sci. Technol., 45, 5564-5571.
11. Jassby, D., Budarz, J.F., and Wiesner, M., 2012, Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles, Environ. Sci. Technol., 46, 6934-6941.
12. Kim, J. and Lawler, D.F., 2005, Characteristics of zeta potential distribution in silica particles, B. Kor. Chem. Soc., 26, 1083-1089.
13. Korea Environment Institute, 2011, Study on the Regulatory Scheme for the Safety of Manufactured Nanomaterials.
14. Liu, J., 2014, Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System, The Ohio State University Graduate School Master's degree Collection of dissertations.
15. Panyala, N., Pena-Mendze, E., and Havel, J., 2008, Silver or silver nanoparticles: A hazardous threat to the environment and human health?, J. Appl. Biomed., 6, 117-129.
16. Pol, V.G., Srivastava, D., Palchik, O., Palchik, V., Slifkin, M., Weiss, A., and Gedanken, A., 2002, Sonochemical deposition of silver nanoparticles on silica spheres, Langmuir, 18, 3352-3357.
17. Tian, Y., Gao, B., Silvera-Batista, C., and Ziegler, K. J., 2010, Transport of engineered nanoparticles in saturated porous media, J. Nanopart Res., 12(7), 2371-2380.
18. Tombácz, E., Csanaky, C., and Illes, E., 2001, Polydisperse fractal aggregate formation in clay mineral and iron oxide suspensions, pH and ionic strength dependence, Colloid. Polym. Sci., 279, 484-492.
19. Tombácz, E. and Szekeres, M., 2004, Colloidal behabior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes, Appl. Clay Sci., 27, 75-94.
20. Tsegay Mengestab, Degree Project at the Department of Earth Sciences, Department of Earth Sciences, Uppsala University, 2015, Report on Fate and Transport of Nano-TiO2 in Saturated Porous Media: Effect of pH, Ionic Strength and Flow Rate Layer (in Sweden).
21. Wisner, M.R., Lowry, G.V., Alvarez, P., Dionysiou, D., and Biswas, P., 2006, Assessing the risks of manufactured nanomaterials, Environ. Sci. Technol., 40, 4336-1315.
22. Zhou, D., Abdel-Fattah, A.I., and Keller, A.A., 2012, Clay particles destabilize engineered nanoparticles in aqueous environments, Environ. Sci. Technol., 46, 7520-7526.