• Quantitative Comparison of the Photocatalytic Efficiency of TiO2 Nanotube Film and TiO2 Powder
  • Jang, Jun-Won;Park, Sung Jik;Park, Jae-Woo;
  • Convergence R&D Team, Pohang Institute of Metal Industry Advancement;Department of Civil and Environmental Engineering, Hanyang University;Department of Civil and Environmental Engineering, Hanyang University;
References
  • 1. Aromaa, M., Keskinen, H., Mäkelä and J.M., 2007, The effect of process parameters on the liquid flame spray generated titania nanoparticles, Biomol. Eng., 24, 543-548.
  •  
  • 2. Carotta, M.C., Gherardi, S., Malagù, C., Nagliati, M., Vendemiati, B., Martinelli, G., Sacerdoti, M., and Lesci, I.G., 2007, Comparison between titania thick films obtained through sol-gel and hydrothermal synthetic processes, Thin Solid Films, 515, 8339-8344.
  •  
  • 3. Choi, W., 2006, Pure and modified TiO2 photocatalysts and their environmental applications, Catal. Surv. Asia, 10, 16-28.
  •  
  • 4. Fujishima, A., Rao, T.N., and Tryk, D.A., 2000, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C-Photochem. Rev., 1, 1-21.
  •  
  • 5. Fujishima, A. and Zhang, X., 2006, Titanium dioxide photocatalysis: present situation and future approaches, C. R. Chim., 9, 750-760.
  •  
  • 6. Haga, Y., An, H., and Yosomiya, R., 1997, Photoconductive properties of TiO2 films prepared by the sol-gel method and its application, J. Mater. Sci., 32, 3183-3188.
  •  
  • 7. Hirakawa, T. and Nosaka, Y., 2002, Properties of O2- and OH formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions, Langmuir, 18, 3247-3254.
  •  
  • 8. Jang, J.W. and Park, J.W., 2011, Photocatalytic performance of TiO2 films produced with combination of oxygen-plasma and rapid thermal annealing, Thin Solid Films, 520, 193-198.
  •  
  • 9. Jang, J.W. and Park, J.W., 2014, Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction, J. Hazard. Mater., 273, 1-6.
  •  
  • 10. Jang, J.W., Jun, J.E., and Park, J.W., 2009, Fabrication of zero valent iron (ZVI) nanotube film via potentiostatic anodization and electroreduction, Water Sci. Technol., 59, 2503-2507.
  •  
  • 11. Karlinsey, R.L., 2005, Preparation of self-organized niobium oxide microstructures via potentiostatic anodization, Electrochem. Commun., 7, 1190-1194.
  •  
  • 12. Kim, L.J., Jang, J.W., and Park, J.W., 2014, Nano TiO2-functionalized magnetic-cored dendrimer as a photocatalyst, Appl. Catal. B-Environ., 147, 973-979.
  •  
  • 13. Lee, W.J. and Smyrl, W.H., 2005, Zirconium oxide nanotubes synthesized via direct electrochemical anodization, Electrochem. Solid State Lett, 8, B7-B9.
  •  
  • 14. Li, X.Z., Li, F.B., Fan, C.M., and Sun, Y.P., 2002, Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO2 mesh photoelectrode, Water Res., 36, 2215-2224.
  •  
  • 15. Liu, Z., Zhang, X., Nishimoto, S., Jin, M., Tryk, D.A., Murakami, T., and Fujishima, A., 2008, Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol, J. Phys. Chem. C, 112, 253-259.
  •  
  • 16. Luyo, C., Fábregas, I., Reyes, L., Solís, J.L., Rodríguez, J., Estrada, W., and Candal, R.J., 2007, SnO2 thin-films prepared by a spray-gel pyrolysis: Influence of sol properties on film morphologies, Thin Solid Films, 516, 25-33.
  •  
  • 17. Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., and Grimes, C.A., 2006, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications, Sol. Energy Mater. Sol. Cells, 90, 2011-2075.
  •  
  • 18. Mukherjee, N., Paulose, M., Varghese, O.K., Mor, G.K., and Grimes, C.A., 2003, Fabrication of nanoporous tungsten oxide by galvanostatic anodization, J. Mater. Res., 18, 2296-2299.
  •  
  • 19. Nischk, M., Mazierski, P., Gazda, M., and Zaleska, A., 2014, Ordered TiO2 nanotubes: The effect of preparation parameters on the photocatalytic activity in air purification process, Appl. Catal. B-Environ., 144, 674-685.
  •  
  • 20. Paulose, M., Prakasam, H.E., Varghese, O.K., Peng, L., Popat, K.C., Mor, G.K., Desai, T.A., and Grimes, C.A., 2007, TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion, J. Phys. Chem. C, 111, 14992-14997.
  •  
  • 21. Quan, X., Zhao, Q., Tan, H., Sang, X., Wang, F., and Dai, Y., 2009, Comparative study of lanthanide oxide doped titanium dioxide photocatalysts prepared by coprecipitation and sol-gel process, Mater. Chem. Phys., 114, 90-98.
  •  
  • 22. Subba Ramaiah, K., and Sundara Raja, V., 2006, Structural and electrical properties of fluorine doped tin oxide films prepared by spray-pyrolysis technique, Appl. Surf. Sci., 253, 1451-1458.
  •  
  • 23. Tsuchiya, H. and Schmuki, P., 2005, Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization, Electrochem. Commun., 7, 49-52.
  •  
  • 24. Wold, A., 1993, Photocatalytic properties of titanium dioxide (TiO2), Chem. Mat., 5, 280-283.
  •  
  • 25. Yang, H.G., Liu, G., Qiao, S.Z., Sun, C.H., Jin, Y.G., Smith, S.C., Zou, J., Cheng, H.M., and Lu, G.Q., 2009, Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets, J. Am. Chem. Soc., 131, 4078-4083.
  •  
  • 26. Yang, J.K. and Lee, S.M., 2006. Removal of Cr(VI) and humic acid by using TiO2 photocatalysis, Chemosphere, 63, 1677-1684.
  •  
  • 27. Yang, S., Liu, Y., and Sun, C., 2006, Preparation of anatase TiO2/Ti nanotube-like electrodes and their high photoelectrocatalytic activity for the degradation of PCP in aqueous solution, Appl. Catal. A-Gen., 301, 284-291.
  •  
  • 28. Yun, D.M., Cho, H.H., Jang, J.W., and Park, J.-W., 2013, Nano zero-valent iron impregnated on titanium dioxide nanotube array film for both oxidation and reduction of methyl orange, Water Res., 47, 1858-1866.
  •  
  • 29. Zhang, Z., Yuan, Shi, G., Fang, Y., Liang, L., Ding, H., and Jin, L., 2007, Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation, Environ. Sci. Technol., 41, 6259-6263.
  •  

This Article

  • 2016; 21(2): 8-14

    Published on Apr 30, 2016

  • 10.7857/JSGE.2016.21.2.008
  • Received on Dec 7, 2015
  • Revised on Dec 16, 2015
  • Accepted on Dec 23, 2015

Correspondence to

  • E-mail: