• Effect of Basic Oxygen Furnace Slag used as Structural Filling Materials on the Subsurface Environment
  • Lee, Hosub;Nam, Taekwoo;Jho, Eun Hea;Nam, Kyoungphile;
  • Department of Civil and Environmental Engineering, Seoul National University;Department of Civil and Environmental Engineering, Seoul National University;Department of Environmental Science, Hankuk University of Foreign Studies;Department of Civil and Environmental Engineering, Seoul National University;
  • 성·복토용으로 사용된 전로제강슬래그가 주변 토양환경에 미치는 영향
  • 이호섭;남택우;조은혜;남경필;
  • 서울대학교 건설환경공학부;서울대학교 건설환경공학부;한국외국어대학교 환경학과;서울대학교 건설환경공학부;
References
  • 1. Adam, G. and Duncan, H., 2002, Influence of diesel fuel on seed germination, Environ. Pollut., 120(2), 363-370.
  •  
  • 2. Ahn, J.W., Cho, J.S., Kim, H.S., Han, G.C., Han, K.S., and Kim, H., 2003, Activation property of blast furnace slag by alkaline activator, J. Korean Ceram. Soc., 40(10), 1005-1014.
  •  
  • 3. Anderson, C., Deram, A., Petit, D., Brooks, R.R., Stewart, R., and Simcock, R., 2001, Induced hyperaccumulation: metal movement and problems, In: I.K. Iskandar and M.B. Kirkham (ed.), Trace Elements in Soils: Bioavailability, Flux and Transfer, Lewis Publishers, New York, p. 63-76
  •  
  • 4. Barisic, I., Dimeter, S., and Netinger, I., 2010, Possibilities of application of slag in road construction, Tech. Gazette, 17(4), 523-528.
  •  
  • 5. Barra, M., Ramonich, E.V., and Munoz, M.A., 2001, Stabilization of soils with steel slag and cement for application in rural and low traffic roads, Proceedings of the beneficial use of recycled materials in transportation application, Arlington, Virginia, p. 423-432.
  •  
  • 6. Blanco, I., Molle, P., Saenz de Miera, L.E., and Ansola, G., 2016, Basic oxygen furnace steel slag aggregates for phosphorus treatment, Evaluation of its potential use as a substrate in constructed wetlands, Water Res., 89(1), 355-365.
  •  
  • 7. Choi, S., Kim, V., Chang, W., and Kim, E., 2007, The present situation of production and utilization of steel slag in Korea and other countries, J. Korea Concr. Inst., 19(6), 28-33.
  •  
  • 8. Czerniawska-Kusaza, I., Ciesielczuk, T., Kusaza, G., and Cichon, A., 2006, Comparison of the Phytotoxkit microbiotest and chemical variables for toxicity evaluation of sediment, Environ. Toxicol., 21(4), 367-372.
  •  
  • 9. Das, B., Prakash, S., Reddy, P.S.R., and Misra, V.N., 2007, An overview of utilization of slag and sludge from steel industries, Resour. Conserv. Recycl., 50(1), 40-57.
  •  
  • 10. Garcia-Gil, J.C., Kobza, J., Soler-Rovira, P., and Javorekova, S., 2013, Soil microbial and enzyme activities response to pollution near an aluminum smelter, Clean-Soil, Air, Water, 41(5), 485-492.
  •  
  • 11. Goto, K., Fujita, R., Kato, T., Asahara, M., and Yokota, A., 2004, Reclassification of Breviabcillus brevis strains NCIMB 132288 and DSM 64742 (=NRRL NRS-887) as Aneurinibacillus danicus sp. Nov. and Brevibacillus limnophilus sp. Nov. Int. J. Sys. Evol. Microbiol., 54, 419-427.
  •  
  • 12. Hull, S.L., Oty, U.V., and Mayes, W.M., 2014, Rapid recovery of benthic invertebrates downstream of hyperalkaline steel slag discharges, Hydrobiologia, 736(1), 83-97.
  •  
  • 13. ISO, 2007, Soil quality – Leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials; part 3: up-flow percolation test, ISO/TC 21268-3, International Organization for Standarization.
  •  
  • 14. Kang, W., 2001, Assessment of chemical leachability of steel slag before and after aging treatments for environmentally safe reuse, Master's degree dissertation, Department of Civil Engineering, Hanyang University, p. 28-29.
  •  
  • 15. Kim, D., 2003, A study on long-term leaching behavior of steel slag before and after aging, Master's degree dissertation, Department of Civil Engineering, Hanyang University, p. 57-71.
  •  
  • 16. Kim, K.H., Ryu, D.H., Kim, S.W., Lim, J.Y., Lee, J.M., and Lee, Y.J., 2009, Experimental study on Flexural Behavior of RC beams with electric arc furnace oxidizing slag aggregates, J. Archit. Inst. Korea Struct. Constr., 25(10), 27-34.
  •  
  • 17. Kim, T.H., 2002, Beneficial reuse of steel slag, J. Korean Ceram. Soc., 5(5), 14-18.
  •  
  • 18. Kim, W.K., 2014, Current state of recycling and properties of steel slag, J. Korean Recycl. Const. Resour. Inst., 9(2), 11-15.
  •  
  • 19. KISA, 2010, Steel Statistical Yearbook 2010, Korean Iron and Steel Association.
  •  
  • 20. KMOE, 2009, Official Standard Methods of Soil Quality - Metal, ES 07400, Korean Ministry of Environment.
  •  
  • 21. Kosson, D.S., van der Sloot, H.A., Sanchez, F., and Garrabrants, A.C., 2002, An integrated framework for evaluating leaching in waste management and utilization of secondary materials, Environ. Eng. Sci., 19(3), 159-204.
  •  
  • 22. Lee, H. and Lee, D., 2005, Evaluation of Lead, Copper, Cadmium, and Mercury Species in the Leachate of Steel Making Slag by Seawater, J. Korean Soc. Environ. Eng., 27(1), 75-84.
  •  
  • 23. Lee, K,J., You, S.Y., Lee, S.R., Ku, J.S., Kang, S.H., and Cho, B.S., 2011, Physicochemical properties analysis of rapidly chilled steel slag, J. Korea Concr. Inst., 23(1), 455-457.
  •  
  • 24. Lekakh, S.N., Rawlins, C.H., Robertson, D.G.C., Richards, V.L., and Peaslee, K.D., 2008, Kinetics of aqueous leaching and carbonization of steelmaking slag, Metall. Mater. Trans. B, 39(1), 125-134.
  •  
  • 25. Luxan, M.P., Sotolongo, R., Dorrego, F., and Herrero, E., 2000, Characteristics of the slags produced in the fusion of scrap steel by electric arc furnace, Cem. Concr. Res., 30(4), 517-519.
  •  
  • 26. Mahieux, P.Y., Aubert, J.E. Escadeillas, G., and Measson, M., 2014, Quantification of hydraulic phase contained in a basic oxygen furnace slag, J. Mater. Civil Eng., 26(4), 593-598.
  •  
  • 27. Manso, J.M., Lopez, V.O., Polanco, J.A., and Setien, J., 2003, The use of ladle furnace slag in soil stabilization, Constr. Build. Mater., 40, 126-134.
  •  
  • 28. Mayes, M.W., Younger, P.L., and Aumonier, J., 2006, Buffering of alkaline steel slag leachate across a natural wetland, Environ. Sci. Technol., 40(4), 1237-1243.
  •  
  • 29. Mayes, W.M., Younger, P.L., and Aumonier, J., 2008, Hydrogeochemistry of alkaline steel slag leachates in the UK, Water Air Soil Pollut., 195(1-4), 35-50.
  •  
  • 30. McGowen, S.L., Basta, N.T., and Brown, G.O., 2001, Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil, J. Environ. Qual., 30(2), 493-500.
  •  
  • 31. Munoz-Melendez, G., Korre, A., and Parry, S. J., 2000, Influence of soil pH on the fractionation of Cr, Cu and Zn in Solid phases from a landfill site, Environ. Pollut., 110(3), 497-504.
  •  
  • 32. Na, H., Yoon, Y., and Yoon, G., 2011, Environmental effect of the reduced slag in the electric furnace, J. Korean Geo-Environ. Soc., 12(7), 23-29.
  •  
  • 33. OECD, 2006, Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test, OECD/OCDE 208, Organisation for Economic Co-operation and Development (OECD).
  •  
  • 34. Peek, D.C. and Volk, V.V., 1985, Fluoride sorption and desorption in soils, Soil Sci. Soc. Am. J., 49(3), 583-586.
  •  
  • 35. Poh, H.Y., Ghataora, G.S., and Ghazireh, N., 2006, Soil stabilization using basic oxygen steel slag fines, J. Mater. Civil. Eng., 18(2), 229-240.
  •  
  • 36. Proctor, D.M., Fehling, K.A., Shay, E.C., Wittenborn, J.L., Green, J.J., Avent, C., Bigham, R.D., Connolly, M., Lee, B., Shepker, T.O., and Zak, M.A., 2000, Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags, Environ. Sci. Technol., 34(8), 1576-1582.
  •  
  • 37. Riley, A.L. and Mayes, W.M., 2015, Long-term evolution of highly alkaline steel slag drainage waters, Environ. Monit. Assess., 187(7), 1-16.
  •  
  • 38. Samaras, P., Papadimitriou, C.A., Haritou, I., and Zouboulis, A.I., 2008, Investigation of sewage sludge stabilization potential by the addition of fly ash and lime, J. Hazard. Mater., 154(1), 1052-1059.
  •  
  • 39. Shen, D.H., Wu, C.M., and Du, J.C., 2009, Laboratory invenstigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture, Constr. Build. Mater., 23(1), 453-461.
  •  
  • 40. Tossavainen, M., Engstrom, F., Yang, Q., Menad, N., Lidstrom Larsson, M., and Bjorkman, B., 2007, Characteristics of steel slag under different cooling condition, Waste Manage., 27(10), 1335-1344.
  •  
  • 41. Tsakiridis, P.E., Papadimitrious, G.D., Tsivilis, S., and Koroneos, C., 2008, Utilization of steel slag for Portland cement clinker production, J. Hazard. Mater., 152(2), 805-811.
  •  
  • 42. Waligora, J., Bulteel, D., Degrugilliers, P., Damidot, D., Potdevin, J.L., and Measson, M., 2010, Chemical and mineralogical characterizations of LD converter steel slag: a multi-analytical approach, Mater. Charact., 61(1), 39-48.
  •  
  • 43. Willems, A., 2014, The family phyllobacteriaceae, In: Edward F.D., Stephen L., Erko S., and Fabiano T.(ed.), The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, Springer, Berlin, p. 355-418.
  •  

This Article

  • 2016; 21(3): 6-13

    Published on Jun 30, 2016

  • 10.7857/JSGE.2016.21.3.006
  • Received on Oct 6, 2015
  • Revised on Nov 6, 2015
  • Accepted on Mar 3, 2016

Correspondence to

  • E-mail: