• Comparative Application of Various Machine Learning Techniques for Lithology Predictions
  • Jeong, Jina;Park, Eungyu;
  • Department of Geology, Kyungpook National University;Department of Geology, Kyungpook National University;
  • 다양한 기계학습 기법의 암상예측 적용성 비교 분석
  • 정진아;박은규;
  • 경북대학교 지질학과;경북대학교 지질학과;
References
  • 1. An, L.H., 2000, Neutral network in lithology determination, Tap Chi Tin Hoc Va Dieu Khien Hoc, 16(2), 59-62.
  •  
  • 2. Bauer, K., Schulze, A., Ryberg, T., Sobolev, S.V., and Weber, M.H., 2003, Classification of lithology from seismic tomography: A case study from the Messum igneous complex, Namibia, J. Geophys. Res., 108(B3), 2152, doi:10.1029/2001JB001073.
  •  
  • 3. Benaouda, D., Wadge, G., Whitmarsh, R.B., Rothwell, R.G., and MacLeod, C., 1999, Inferring the lithology of borehole rocks by applying neural network classifiers to downhole logs: an example from the Ocean Drilling Program, Geohphys. J. Int., 136, 477-491.
  •  
  • 4. Birch, F., 1961, The velocity of compressional waves in rocks to 10 kilobars, part 2, J. Geophys. Res., 66, 2199-2224.
  •  
  • 5. Bishop, C.M., 1995, Neural networks for pattern recognition, Oxford University Press.
  •  
  • 6. Bowling, J.M., Rodriguez, A.B., Harry, D.L., and Zheng, C., 2005, Delineating alluvial aquifer heterogeneity using resistivity and GPR data, 2005, Ground Water, 43(6), 890-903.
  •  
  • 7. Bowling, J.M., Harry, D.L, Rodriguez, A.B., and Zheng, C., 2007, Integrated geophysical and geological investigation of heterogeneous fluvial aquifer in Columbus Mississippi, Journal of Applied Geophysics, 62, 58-73.
  •  
  • 8. Busch, J.M., Fortney, W.G., and Berry, L.M., 1987, Determination of lithology from well logs by statistical analysis, SPE Formation Evaluation, 2, 412-418.
  •  
  • 9. Chang, H.C., Chen, H.C., and Fang, J.H, 1997, Lithology Determination from Well Logs with Fuzzy Associative Memory Neural Network, IEEE Transactions on Geoscience and Remote Sensing, 35(3), 773-780.
  •  
  • 10. Christensen, N.I., 1996, Poisson’s ratio in crustal seismology, J. Geophys. Res., 101, 3139-3156.
  •  
  • 11. Cortes, C. and Vapnik, V., 1995, Support-vector networks, Machine Learning, 20(3), 273, DOI:10.1007/BF00994018.
  •  
  • 12. Delfiner, P., Peyret, O., and Serra, O., 1987, Automatic determination of lithology from well logs, SPE Formation Evaluation, 2, 303-310.
  •  
  • 13. Dunne, R.A. and Campbell, N.A., 1997, On the pairing of the softmax activation and cross-entropy penalty functions and the derivation of the softmax activation function, Proc. 8th Aust. Conf. on Neural Networks, Melb., 181-185.
  •  
  • 14. Eidsvik, J., Mukerji, T., and Switzer, P., 2004, Estimation of geological attributes from a well log: an application of hidden Markov chains, Mathematical Geology, 36(3), 379-397.
  •  
  • 15. Elliott, R.J., Aggoun, L., and Moore, J.B., 1995, Hidden Markov models: estimation and control, Springer, New York.
  •  
  • 16. Fung, C.C., Wong, K.W., Eren, H., and Charlebois, R., 1995, Lithology Classification Using Self-Organising Map, IEEE international Conference, 1.
  •  
  • 17. Gassaway, G.R., Miller, D.R., Bennett, L.E., Brown, R.A., Rapp, M., and Nelson, V., 1989, Amplitude variations with Offset: fundamentals and Case Histories, SEG Continuing Education Course Notes.
  •  
  • 18. Guven, O., Molz, F.J., Melville, J.G., El Didy, S., and Boman, G.K., 1992, Three-dimensional modeling of a two-well tracer test, Ground water, 30(6), 945-957.
  •  
  • 19. Jeong, J., Park, E., Han, W.S., and Kim, K.Y., 2014, A novel data assimilation methodology for predicting lithology based on sequence labeling algorithms, Journal of Geophysical Research: Solid Earth, 119(10), 7503-7520.
  •  
  • 20. Kendall, M.G. and Stuart, A., 1977, The advanced theory of statistics, Vol. 4, 4th ed., MacMillan, New York.
  •  
  • 21. Liu, G., Zheng, C., Gorelick, S.M., 2004, Limits of applicability of the advection-dispersion model in aquifers containing high-conductivity channels, Water Resour. Res., 40, W08308, DOI:10.1029/2003WR002735.
  •  
  • 22. Maiti, S., Tiwari, R.K., and Kumpel, H.-J., 2007, Neural network modelling and classification of lithofacies using well log data: a case study from KTB borehole site, Geophys. J. Int., 169, 733-746.
  •  
  • 23. Murphy, K.P., 2012, Machine learning: a probabilistic perspective, MIT press, 1067p.
  •  
  • 24. Park, E., 2010, A multidimensional generalized coupled Markov chain model for surface and subsurface characterization, Water Resour. Res., 46(11), W11509, doi:10.1029/2009WR008355.
  •  
  • 25. Pickett, G.R., 1963, Acoustic character logs and their application in formation evaluation, J. Petr. Tech., 15, 659-667.
  •  
  • 26. Rimstad, K. and Omre, H., 2013, Approximate posterior distributions for convolutional two-level hidden Markov models, Computational Statistics and Data Analysis, 58, 187-200, doi:10.1016/j.csda.2012.09.001.
  •  
  • 27. Rogers, S.J., Fang, J.H., Karr, C.L., and Stanley, D.A., 1992, Determination of lithology from well logs using a neural network, The American Association of Petroleum Geolgists Bulletin, 76(5), 731-739.
  •  
  • 28. Sandham, W. and Leggett, M., 2003, Geophysical applications of artificial neural networks and fuzzy logic, Springer-science+business Media, Kluwer Acad., Boston, 348 p.
  •  
  • 29. Schon, J.H., 1996, Physical Properties of Rocks: Fundamentals and Principles of Petrophysics, Handbook of Geophys. Explor., Seismic Explor., 18, Pergamon, New York.
  •  
  • 30. Schumann, A., 1997, Neural networks versus statistics: a comparing study of their classification performance on well log data, Proc. Annu. Conf. International Association for Mathematical Geology-IAMG'97, 3rd, Barcelona, Spain, 237-241.
  •  
  • 31. Schumann, A., 2002, Hidden Markov models for lithological well log classification, In Proc. Annu. Conf. International Association for Mathematical Geology-IAMG'2002, 8th, Berlin, Germany, 373-378.
  •  
  • 32. Smirnoff, A., Boisvert, E., and Paradis, S.J., 2008, Support vector machine for 3d modelling from sparse geological information of various origins, Comput. Geosci., 34(2), 127-143.
  •  
  • 33. Sobolev, S.V. and Babeyko, A.Y., 1994, Modeling of mineral composition, density, and elastic wave velocities in anhydrous magmatic rocks, Surv. Geophys., 15, 515-544.
  •  
  • 34. Thompson, A.F.B. and Gelhar, L.W., 1990, Numerical siulation of solute transport in three-dimensional randomly heterogeneous porous media, Water Resour. Res., 26, 2541-2562.
  •  
  • 35. Wollff, M. and Pelissier-Combescure, J., 1982, Faciolog: automatic electrofacies determination, SPWLA Annual Logging Symposium, 6-9.
  •  
  • 36. Zheng, C. and Gorelick, S.M., 2003, Analysis of the effect of decimeter-scale preferential flow paths on solute transport, Ground Water, 41(2), 142-155.
  •  

This Article

  • 2016; 21(3): 21-34

    Published on Jun 30, 2016

  • 10.7857/JSGE.2016.21.3.021
  • Received on Jan 22, 2016
  • Revised on Mar 15, 2016
  • Accepted on Mar 29, 2016

Correspondence to

  • E-mail: