• Mercury Resistance and Removal Mechanisms of Pseudomonas sp. Isolated Mercury-contaminated Site in Taiwan
  • Luo, Kai-Hong;Chen, Ssu-Ching;Liao, Hung-Yu;
  • Department of Life Sciences, National Central University;Department of Life Sciences, National Central University;Department of Life Sciences, National Central University;
References
  • 1. Cassier-Chauvat, C. and Chauvat, F., 2015, Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances, Int. J. Mol. Sci., 16, 871-886.
  •  
  • 2. Chien, C.C., Kao, C.M., Chen, D.Y., Chen, S.C., and Chen, C.C., 2014, Biotransformation of trinitrotoluene (TNT) by Pseudomonas spp. isolated from a TNT-contaminated environment, Environ. Toxicol. Chem., 33, 1059-1063.
  •  
  • 3. Cursino, L., Mattos, S. V. M., Azevedo, V., Galarza, F., Bucker, D. H., Chartone-Souza, E., and Nascimento, A. M. A., 2000, Capacity of mercury volatilization by mer (from Escherichia coli) and glutathione S-transferase (from Schistosoma mansoni) genes cloned in Escherichia coli, Sci. Total Environ., 261, 109-113.
  •  
  • 4. Dash, H.R. and Das, S., 2012, Bioremediation of mercury and the importance of bacterial mer genes, Int. Biodeterior. Biodegrad., 75, 207-213.
  •  
  • 5. Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, B.U., Sahu, A., Shukla, R., Singh, P.B., Rai, P.J., Sharma, K.P., Lade, H., and Paul, D., 2015, Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes, Sustainability, 7.
  •  
  • 6. Hobman, J.L. and Crossman, L.C., 2015, Bacterial antimicrobial metal ion resistance, J. Med. Microbiol., 64, 471-497.
  •  
  • 7. Hsu, L.S., Chiou, B.H., Hsu, T.W., Wang, C.C., and Chen, S.C., 2016, The regulation of transcriptome responses in zebrafish embryo exposure to triadimefon, Environ. Toxicol.
  •  
  • 8. Jozefczak, M., Remans, T., Vangronsveld, J., and Cuypers, A., 2012, Glutathione is a key player in metal-induced oxidative stress defenses, Int. J. Mol. Sci., 13, 3145-3175.
  •  
  • 9. Kisand, V. and Lettieri, T., 2013, Genome sequencing of bacteria: sequencing, de novoassembly and rapid analysis using open source tools, BMC Genomics, 14, 1-11.
  •  
  • 10. Mathema, V.B., Thakuri, B.C., and Sillanpaa, M., 2011, Bacterial mer operon-mediated detoxification of mercurial compounds: a short review, Arch. Microbiol., 193, 837-844.
  •  
  • 11. Munson, G.P., Lam, D.L., Outten, F.W., and O'Halloran, T.V., 2000, Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12, J Bacteriol, 182, 5864-5871.
  •  
  • 12. Ndu, U., Barkay, T., Schartup, A.T., Mason, R.P., and Reinfelder, J.R., 2016, The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria, Biodegradation, 27, 29-36.
  •  
  • 13. Pradhan, S., Bandhiwal, N., Shah, N., Kant, C., Gaur, R., and Bhatia, S., 2014, Global transcriptome analysis of developing chickpea (Cicer arietinum L.) seeds, Front. Plant. Sci., 5, 698.
  •  
  • 14. Qin, Y.F., Fang, H.M., Tian, Q.N., Bao, Z.X., Lu, P., Zhao, J.M., Mai, J., Zhu, Z.Y., Shu, L.L., Zhao, L., Chen, S.J., Liang, F., Zhang, Y.Z., and Zhang, S.T., 2011, Transcriptome profiling and digital gene expression by deep-sequencing in normal/regenerative tissues of planarian Dugesia japonica, Genomics, 97, 364-371.
  •  
  • 15. Regier, N., Baerlocher, L., Munsterkotter, M., Farinelli, L., and Cosio, C., 2013, Analysis of the Elodea nuttallii transcriptome in response to mercury and cadmium pollution: development of sensitive tools for rapid ecotoxicological testing, Environ. Sci. Technol., 47, 8825-8834.
  •  
  • 16. Robinson, J.B. and Tuovinen, O.H., 1984, Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses, Microbiol. Rev., 48, 95-124.
  •  
  • 17. Singh, R., Gautam, N., Mishra, A., and Gupta, R., 2011, Heavy metals and living systems: An overview, Indian J. Pharmacol., 43, 246-253.
  •  
  • 18. Singh, S., Parihar, P., Singh, R., Singh, V.P., and Prasad, S.M., 2015, Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics, Front. Plant. Sci., 6, 1143.
  •  
  • 19. Sun, G., Yang, Y., Xie, F., Wen, J.-F., Wu, J., Wilson, I.W., Tang, Q., Liu, H., and Qiu, D., 2013, Deep Sequencing Reveals Transcriptome Re-Programming of Taxus × media Cells to the Elicitation with Methyl Jasmonate, PLoS ONE, 8, e62865.
  •  
  • 20. Tao, X., Jiang, M., Zhang, F., Xu, F., and Wei, H., 2015, Draft Genome Sequence of Lactobacillus plantarum WLPL04, Isolated from Human Breast Milk, Genome Announc., 3.
  •  
  • 21. Vining, K.J., Romanel, E., Jones, R.C., Klocko, A., Alves-Ferreira, M., Hefer, C.A., Amarasinghe, V., Dharmawardhana, P., Naithani, S., Ranik, M., Wesley-Smith, J., Solomon, L., Jaiswal, P., Myburg, A.A., and Strauss, S.H., 2015, The floral transcriptome of Eucalyptus grandis, New Phytol., 206, 1406-1422.
  •  
  • 22. Wang, Z., Gerstein, M., and Snyder, M., 2009, RNA-Seq: a revolutionary tool for transcriptomics, Nat. Rev. Genet., 10, 57-63.
  •  
  • 23. Xie, F., Burklew, C.E., Yang, Y., Liu, M., Xiao, P., Zhang, B., and Qiu, D., 2012, De novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome, Planta, 236, 101-113.
  •  
  • 24. Zhou, X., Li, Y., Liu, S., Yang, Q., Su, X., Zhou, L., Tang, M., Fu, R., Li, J., and Huang, Q., 2013, Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification, GigaScience, 2, 4.
  •  

This Article

  • 2016; 21(5): 16-24

    Published on Oct 31, 2016

  • 10.7857/JSGE.2016.21.5.016
  • Received on Oct 4, 2016
  • Revised on Oct 15, 2016
  • Accepted on Oct 28, 2016

Correspondence to

  • E-mail: