• Applicability of Stabilization with Iron Oxides for Arsenic-Contaminated Soil at the Forest Area near the Former Janghang Smelter Site
  • Yang, Kyung;Kim, Byung Chul;Yu, Gihyeon;Nam, Kyoungphile;
  • Environmental Assessment Group, Korea Environment Institute;Department of Civil and Environmental Engineering, Seoul National University;Department of Civil and Environmental Engineering, Seoul National University;Department of Civil and Environmental Engineering, Seoul National University;
  • (구)장항제련소 주변 송림산림욕장 지역 비소 오염토양의 철산화물을 이용한 비소 안정화 공법 적용 가능성 평가
  • 양경;김병철;유기현;남경필;
  • 한국환경정책평가연구원 환경평가본부;서울대학교 건설환경공학부;서울대학교 건설환경공학부;서울대학교 건설환경공학부;
References
  • 1. Acar, Y.B., Gale, R.J., Alshawabkeh, A.N., Marks, R.E., Puppala, S., Bricka, M., and Parker, R., 1995, Electrokinetic remediation: Basics and technology status, J. Hazard. Mater., 40(2), 117-37.
  •  
  • 2. Catalano, J.G., Park, C., Fenter, P., and Zhang, Z., 2008, Simultaneous inner-and outer-sphere arsenate adsorption on corundum and hematite, Geochim. Cosmochim. Acta, 72(8), 1986-2004.
  •  
  • 3. CCME (Canadian Council of Ministers of the Environment), 2006, A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines.
  •  
  • 4. Cheng, H., Hu, Y., Luo, J., Xu, B., and Zhao, J., 2009, Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems, J. Hazard. Mater., 165(1-3), 13-26.
  •  
  • 5. Dermont, G., Bergeron, M., Mercier, G., and Richer-Lafleche, M., 2008, Metal-contaminated soils: Remediation practices and treatment technologies, Pract. Period. Hazard., Toxic, Radioact. Waste Manage., 12(3), 188-209.
  •  
  • 6. Dixit, S. and Hering, J.G., 2003, Comparison of arsenic (v) and arsenic (iii) sorption onto iron oxide minerals:Implications for arsenic mobility, Environ. Sci. Technol., 37(18), 4182-9.
  •  
  • 7. Evans, R.O., 2003, Water Table Management, In: Heldman, D.R. (Ed.), Encyclopedia of Agricultural, Food, and Biological Engineering, Marcel Dekker, New York.
  •  
  • 8. Fendorf, S., Eick, M.J., Grossl, P., and Sparks, D.L., 1997, Arsenate and chromate retention mechanisms on goethite. 1. Surface structure, Environ. Sci. Technol., 31(2), 315-20.
  •  
  • 9. Goldberg, S. and Johnston, C.T., 2001, Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling, J. Colloid Interface Sci., 234(1), 204-16.
  •  
  • 10. Hartley, W. and Lepp, N.W., 2008a, Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils, Environ. Pollut., 156(3), 1030-40.
  •  
  • 11. Hartley, W. and Lepp, N.W., 2008b, Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake, Sci. Total Environ., 390(1), 35-44.
  •  
  • 12. Health Canada, 2004, Federal Contaminated Site Risk Assessment in Canada Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA).
  •  
  • 13. KECO (Korea Environment Corporation), 2008, Detailed Soil Survey Report for Former Janahang Smelter Area.
  •  
  • 14. KECO, 2013, Detailed Soil Survey Report for Purchased Area of Former Janahang Smelter Area.
  •  
  • 15. Kelley, M.E., Brauning, S., Schoof, R., and Ruby, M., 2002, Assessing Oral Bioavailability of Metals in Soil, Battelle Press, Columbus, OH, 124 p.
  •  
  • 16. Kim, K.-R., Lee, B.-T., and Kim, K.-W., 2012, Arsenic stabilization in mine tailings using nano-sized magnetite and zero valent iron with the enhancement of mobility by surface coating, J. Geochem. Explor., 113, 124-9.
  •  
  • 17. KMOE (Korea Ministry of Environment), 2007, Korean Exposure Factors Handbook.
  •  
  • 18. KMOE, 2013, Official Test Methods of Soil Quality, 2013-113.
  •  
  • 19. KMOE, 2014, Official Air Pollution Test Method, 2014-9.
  •  
  • 20. KMOE, 2015a, Soil Contaminant Risk Assessment Guidance, 2015-64.
  •  
  • 21. KMOE, 2015b, Soil Environment Conservation Act, 13533.
  •  
  • 22. Ko, M.-S., Kim, J.-Y., Lee, J.-S., Ko, J.-I., and Kim, K.-W., 2013, Arsenic immobilization in water and soil using acid mine drainage sludge, Appl. Geochem., 35, 1-6.
  •  
  • 23. Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., and Maurice, C., 2006, Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil, Environ. Pollut., 144(1), 62-9.
  •  
  • 24. Kumpiene, J., Ragnvaldsson, D., Lovgren, L., Tesfalidet, S., Gustavsson, B., Lattstrom, A., Leffler, P., and Maurice, C., 2009, Impact of water saturation level on arsenic and metal mobility in the Fe-amended soil, Chemosphere, 74(2), 206-15.
  •  
  • 25. Manning, B.A., Hunt, M.L., Amrhein, C., and Yarmoff, J.A., 2002, Arsenic (III) and arsenic (v) reactions with zerovalent iron corrosion products, Environ. Sci. Technol., 36(24), 5455-61.
  •  
  • 26. Mench, M., Vangronsveld, J., Clijsters, H., Lepp, N.W., and Edwards, R., 2000, In situ metal immobilisation and phytostabilisation of contam-inated soils, In: Terry, N., Banuelos, G. (Eds.), Phytoremediation of contaminated soil and water, Lewis Publishers, Boca Raton, FL.
  •  
  • 27. Mench, M., Bussiere, S., Boisson, J., Castaing, E., Vangronsveld, J., Ruttens, A., De Koe, T., Bleeker, P., Assun ao, A., and Manceau, A., 2003, Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments, Plant Soil, 249(1), 187-202.
  •  
  • 28. Nielsen, S.S., Petersen, L.R., Kjeldsen, P., and Jakobsen, R., 2011, Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment, Chemosphere, 84(4), 383-9.
  •  
  • 29. RIVM (Netherlands National Institute for Public Health and the Environment), 2007, CSOIL 2000: An Exposure Model for Human Risk Assessment of Soil Contamination, Laboratory for Ecological Risk Assessment, 711701054/2007.
  •  
  • 30. Sherman, D.M. and Randall, S.R., 2003, Surface complexation of arsenic (V) to iron (III) (hydr) oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy, Geochim. Cosmochim. Acta, 67(22), 4223-30.
  •  
  • 31. Shipley, H., Engates, K., and Guettner, A., 2011, Study of iron oxide nanoparticles in soil for remediation of arsenic, J. Nanopart. Res., 13(6), 2387-97.
  •  
  • 32. USEPA (U.S. Environmental Protection Agency), 1992, Guidelines for Exposure Assessment, Risk Assessment Forum, Washington, DC, USA, EPA/600/Z-92/001.
  •  
  • 33. USEPA, 2002, Arsenic Treatment Technologies for Soil, Waste, and Water, Washington, DC, USA, EPA/542/R-02/004.
  •  
  • 34. USEPA, 2004, Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Office of Superfund Remediation and Technology Innovation, Washington, DC, USA, EPA/540/R-99/005.
  •  
  • 35. USEPA, 2011, Exposure Factors Handbook, Office of Research and Development, Washington, DC, USA, EPA/600/R-09/052F.
  •  
  • 36. USEPA, 2013, ProUCL 5.0 software, available at http://www.epa.gov/osp/hstl/tsc/software.htm.
  •  
  • 37. USEPA, 2015, Integrated Risk Information System (IRIS), available at http://www.epa.gov/iris/.
  •  
  • 38. US Navy, 2010, Description of NZVI, available at https://portal.navfac.navy.mil/portal/page/portal/navfac/navfac_ww_pp/navfac_nfesc_pp/environmental/erb/nzvi.
  •  
  • 39. Voegelin, A. and Hug, S.J., 2003, Catalyzed oxidation of arsenic (iii) by hydrogen peroxide on the surface of ferrihydrite:An in situ ATR-FTIR Study, Environ. Sci. Technol., 37(5), 972-8.
  •  
  • 40. WHO (World Health Organization), 2015, Agents classified by the IARC monographs, available at http://monographs.iarc.fr/ENG/Classification/.
  •  

This Article

Correspondence to

  • E-mail: