Department of Geoenvironmental Sciences, Kongju National University;Department of Geology, Kyungpook National University;Department of Geology, Kyungpook National University;Department of Geology, Kyungpook National University;Byucksan Engineering;Korea Radioactive Waste Agency;GeoGreen21 Co. Ltd.;GeoGreen21 Co. Ltd.;Dohwa Engineering;GeoInnovation;Korea Water Resources Corporation;Korea Rural Community Corporation;
1. Kim, G.B., Choi, D.H., Yoon, P.S., and Kim, K.Y., 2010, Trends of groundwater quality in the areas with a high possibility of pollution, J. Korean Geo-Environ. Soc., 11(3), 5-16.
2. Ministry of Environment (Korea), National Institute of Environmental Research (Korea), 2007-2013, National Groundwater Quality Monitoring Network Annual Report.
3. Bazi, Y., Alajlan, N., and Melgani, F., 2012, Improved Estimation of Water Chlorophyll Concentration With Semisupervised Gaussian Process Regression, IEEE Trans. Geosci. Remote Sensing, 50(7), 2733-2743.
4. Chapman, D., 1996, Water quality assessments: a guide to the use of biota, sediments, and water in environmental monitoring, UNESCO/WHO/UNEP, 22 p.
5. Grbi, R., Kurtagi, D., and Sli kovi, D., 2013, Stream water temperature prediction based on Gaussian process regression, Expert Sys. Applic., 40(18), 7407-7414.
6. Helsel, D.R. and Hirsch, R.M., 1988, Applicability of the t-Test for Detecting Trends in Water Quality Variables, J. American Water Resour. Assoc., 24(1), 201-204.
7. Helsel, D.R. and Hirsch, R.M., 2002, Statistical methods in water resources: US Geological Survey Techniques of Water Resources Investigations, book 4, chap. A3, U.S. Geological Survey.
8. Hirsch, R.M., Slack, J.R., and Smith, R.A., 1982, Techniques of trend analysis for monthly water-quality data, Water Resour. Res., 18, 107-121.
9. Hirsch, R.M., Alexander, R.B., and Smith, R.A., 1991, Selection of methods for the detection and estimation of trends in water quality, Water Resour. Res., 27(5), 803-813.
10. Jarque, Carlos M., Bera, Anil K., 1987, A test for normality of observations and regression residuals, Int. Stat. Rev., 55(2), 163-172.
11. Murphy, K.P., 2012, Machine Learning: a Probabilistic Perspective, The MIT Press, Cambridge, 1067 p.
12. Sun, A.Y., Wang, D., and Xu, X., 2014, Monthly streamflow forecasting using Gaussian Process Regression, J. Hydro., 511, 72-81.