• Isolation and Identification of Bacteria Involved with Biomineralization at B Mine Sludge in Mexico
  • Kim, Joon-Ha;Yun, Seong-Yeol;Park, Yoon Soo;Lee, Jai-Young;
  • Department of Environmental Engineering, The University of Seoul;Department of Environmental Engineering, The University of Seoul;Department of Environmental Engineering, The University of Seoul;Department of Environmental Engineering, The University of Seoul;
  • 멕시코 B 광산 슬러지에 존재하는 생물학적 광물화 미생물의 특성에 관한 연구
  • 김준하;윤성열;박윤수;이재영;
  • 서울시립대학교 환경공학과;서울시립대학교 환경공학과;서울시립대학교 환경공학과;서울시립대학교 환경공학과;
References
  • 1. Achal, V., Mukherjee, A., Basu, P.C., and Reddy, M.S., 2009, Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production, J. Ind. Microbiol. Biotechnol., 36(7), 981-988.
  •  
  • 2. Boquet, E., Boronat, A., and Ramos-Cormenzana, A., 1973, Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon, Nature, 246, 527-529.
  •  
  • 3. Chung, J.H., Kang, P.S., Kim, C.Y., Lee, K.S., Hwang, T.Y., Kim, G.T., Park, J.S., Park, S.Y., Kim, D.S., Lim, O.T., and Sakong, J., 2005, Blood Pb, urine Cd and health assessment of residents in the vicinity of abandoned mines in Gyeongsangbukdo, Korean J. Occup. Environ. Med., 17(3), 225-237.
  •  
  • 4. Ciurli, S., Marzadori, C., Benini, S., Deiana S., and Gessa, C., 1996, Urease from the Soil Bacterium Bacillus pasteurii : Immobilization on Ca-polygalacturonate, Soil Biol. Biochem., 28(6), 811-817.
  •  
  • 5. Dhami, N.K., Reddy, M.S., and Mukherjee, A., 2014, Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization, Appl. Biochem. Biotechnol., 172(5), 2552-2561.
  •  
  • 6. Dejong, J.T., Mortensen, B.M., Martinez, B.C., and Nelson, D.C., 2010, Bio-mediated soil improvement, J. Ecol. Eng., 36(2), 197-210.
  •  
  • 7. Gorospe, C.M., Han, S.H., Kim, S.G., Park, J.Y., Kang, C.H., Jeong, J.H., and So, J.S., 2013, Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558, Biotechnol. Bioprocess Eng., 18(5), 903-908.
  •  
  • 8. Jakubick, A., McKenna, G., and Robertson, A.M., 2003, Stabilisation of tailings deposits : International Experience, Proceedings of Mining and the Environment III, Sudbury, Ontario, Canada, p.1-9.
  •  
  • 9. Kawatra, S.K. and Natarajan, K.A., 2001, Mineral biotechnology: microbial aspects of mineral beneficiation, metal extraction, and environmental control, Society for Mining, Metallugy and Exploration, inc. (SME).
  •  
  • 10. Kim, D.H., Kim, H.C., and Park, K.H., 2010, Possibility of cementation of soft soil using Bacteria, Korean Geotech. Soc. Fall National Conference, Gyeonggi, Korea, p.379-391.
  •  
  • 11. Kim, S.H., Cho, Y.M., Choi, S.H., Kim, H.J., and Choi, J.W., 2011, The effect of exposure factors on the concentration of heavy metals in residents near abandoned metal mines, J. Prev. Med. Public Health, 44(1), 41-47.
  •  
  • 12. Kim, S.T., Lee, C.J., Kim, H.J., and Lee, H.C., 2012, The influence of calcite nano material on microorganism mixed mortar, J. Archit. Inst. Korea Struct. Constr., 28(5), 77-85.
  •  
  • 13. Lee, J.D., Kim, T.D., Kim, S.G., and Kim, H.J., 2013, Study on the contamination characteristics of pollutants at various type of abandoned metal mines, J. Soil. Groundwater Environ., 18(3), 93-108.
  •  
  • 14. Lee, S., Kim, T.H., and Lee, J.H., 2007, Soil test method, Korea, Goomibook.
  •  
  • 15. Li, D., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F., and De Yoreo, J.J., 2012, Direction-specific interactions control crystal growth by oriented attachment, Science, 336(6084), 1014-1018.
  •  
  • 16. Loewenthal, R.E. and Marais, G.V.R., 1978, Carbonate chemistry of aquatic systems: theory and application, 1, Ann Arbor Science, Ann Arbor.
  •  
  • 17. MOE (Ministry of Environment), 2007, Residents health influence investigation of the abandoned metal mine.
  •  
  • 18. MOE (Ministry of Environment), 2008, Health assessment of residents in the vicinity of abandoned mines.
  •  
  • 19. MOE (Ministry of Environment), 2015, Development of hybrid immobilizing technology with indigenous bacteria and industrial waste.
  •  
  • 20. Mitchell, A.C. and Ferris, F.G., 2005, The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater : temperature and kinetics dependence, Geochim. Cosmochim. Acta, 69(17), 4199-4210.
  •  
  • 21. Mitchell, J.K. and Santamarina, J.C., 2005, Biological considerations in geotechnical engineering, J. Geotech. Geoenviron. Eng., 131(10), 1222-1233.
  •  
  • 22. Mortensen, B.M., Haber, M.J., DeJong, J.T., Caslake, L.F., and Nelson, D.C., 2011, Effects of environmental factors on microbial induced calcium carbonate precipitation, J. Appl. Microbiol., 111(2), 338-349.
  •  
  • 23. Okwadha, G.D.O. and Li, J., 2010, Optimum conditions for microbial carbonate precipitation, Chemosphere, 81(9), 1143-1148.
  •  
  • 24. Park, K.H. and Kim, D.H., 2012, Verification of calcium carbonate by cementation of silt and sand using bacteria, J. Korean Geotech. Soc., 28(6), 53-61.
  •  
  • 25. Park, M.J., 2014, Characterization of urease-producing bacteria and stabilization of heavy metal, J. Soil. Sci. Fertil., 47(6), 391-397.
  •  
  • 26. Park, S.J., Park, S.H., and Ghim, S.Y., 2014, The effects of Paenibacillus polymyxa E681 on antifungal and crack remediation of cement paste, Curr. Microbiol., 69(4), 412-416.
  •  
  • 27. Phae, C.G. and Oh, J.M., 2002, Soil contamination measurement analysis, Korea, Sinkwang-munhwasa.
  •  
  • 28. Sarda, D., Choonia, H.S., Sarode, D.D., and Lele, S.S., 2009, Biocalcification by Bacillus pasteurii urease: a novel application, J. Ind. Microbiol. Biotechnol., 36(8), 1111-1115.
  •  
  • 29. Seok, H.J. and Kim, C.G., 2013, Comparative assessment on indicating factor for biomineralization by Bacillus species, J. Korean Soc. Environ. Eng., 35(3), 179-191.
  •  
  • 30. Singh, T.S. and Pant, K.K., 2006, Solidification/stabilization of arsenic containing solid wastes using Portland cement, fly ash and polymeric materials, J. Hazard. Mater., 131(1), 29-36.
  •  
  • 31. Stocks-Fischer, S., Galinat, J.K., and Bang, S.S., 1999, Microbiological precipitation of $CaCO_3$, Soil Biol. Biochem., 31(11), 1563-1571.
  •  
  • 32. Thompson, J.D., Higgins, D.G., and Gibson, T.J., 1994, CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalies and weight matrix choice, Nucleic Acids Res., 22(22), 4673-4680.
  •  
  • 33. United States Environmental Protection Agency (USEPA) Method 1311, 1988, Toxicity Characteristic Leaching Procedure, SW-846 : Test Methods for Evaluating Solid Waste Physical/Chemical Methods United States Environmental Protection Agency (USEPA).
  •  
  • 34. United States Environmental Protection Agency (USEPA) Method 1312, 1994, Synthetic Precipitation Leaching Procedure, SW-846 : Test Methods for Evaluating Solid Waste Physical/ Chemical Methods United States Environmental Protection Agency (USEPA).
  •  
  • 35. Zeynep, B.B., Mary, J.K., and Raissa, D.F., 2015, Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength, Cem. Concr. Res., 67(9), 237-245.
  •  

This Article

Correspondence to

  • E-mail: