• Estimation of Ultrasonic Energy and Sonochemical Effects in Double-Bath-Type Systems and Heterogeneous Systems
  • Lee, Hyeon Jae;Son, Younggyu;
  • Department of Environmental Engineering, Kumoh National Institute of Technology;Department of Environmental Engineering, Kumoh National Institute of Technology;
  • 이중 반응기 조건 및 비균일계 조건에서의 초음파 에너지 및 화학적 효과 평가
  • 이현재;손영규;
  • 국립금오공과대학교 환경공학과;국립금오공과대학교 환경공학과;
References
  • 1. Adewuyi, Y.G., 2001, Sonochemistry: Environmental science and engineering applications, Ind. Eng. Chem. Res., 40, 4681-4715.
  •  
  • 2. Asakura, Y., Nishida, T., Matsuoka, T., and Koda, S., 2008, Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors, Ultrason. Sonochem., 15, 244-250.
  •  
  • 3. Ashokkumar, M., 2011, The characterization of acoustic cavitation bubbles - An overview, Ultrason. Sonochem., 18, 864-872.
  •  
  • 4. Chiemi, H., Daisuke, K., Hideyuki, M., Tomoki, T., Chiaki, K., Katsuto, O., and Atsushi, S., 2013, Effect of particle addition on degradation rate of methylene blue in an ultrasonic field, Jpn. J. Appl. Phys., 52, 07HE11.
  •  
  • 5. Kobayashi, D., Matsumoto, H., and Kuroda, C., 2008, Effect of reactor's positions on polymerization and degradation in an ultrasonic field, Ultrason. Sonochem., 15, 251-256.
  •  
  • 6. Koda, S., Kimura, T., Kondo, T., and Mitome, H., 2003, A standard method to calibrate sonochemical efficiency of an individual reaction system, Ultrason. Sonochem., 10, 149-156.
  •  
  • 7. Kubo, M., Matsuoka, K., Takahashi, A., Shibasaki-Kitakawa, N., and Yonemoto, T., 2005, Kinetics of ultrasonic degradation of phenol in the presence of $TiO_2$ particles, Ultrason. Sonochem., 12, 263-269.
  •  
  • 8. Lee, K., Park, E., and Seong, W., 2009, High frequency measurements of sound speed and attenuation in water-saturated glass-beads of varying size, J. Acoust. Soc. Am., 126, EL28-EL33.
  •  
  • 9. Lim, M., Son, Y., and Khim, J., 2011, Frequency effects on the sonochemical degradation of chlorinated compounds, Ultrason. Sonochem., 18, 460-465.
  •  
  • 10. Ptrier, C., Combet, E., and Mason, T., 2007, Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds, Ultrason. Sonochem., 14, 117-121.
  •  
  • 11. Son, Y., 2017, Simple design strategy for bath-type high-frequency sonoreactors, Chem. Eng. J., 328, 654-664.
  •  
  • 12. Son, Y., Lim, M., Ashokkumar, M., and Khim J., 2011, Geometric optimization of sonoreactors for the enhancement of sonochemical activity, J. Phys. Chem. C, 115, 4096-4103.
  •  
  • 13. Son, Y., Lim, M., Khim, J., and Ashokkumar, M., 2012, Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor, Ultrason. Sonochem., 19, 16-21.
  •  
  • 14. Torres, R.A., Petrier, C., Combet, E., Moulet, F., and Pulgarin, C., 2006, Bisphenol A Mineralization by Integrated Ultrasound-UV-Iron (II) Treatment, Environ. Sci. Technol., 41, 297-302.
  •  
  • 15. Tuziuti, T., Yasui, K., Sivakumar, M., Iida, Y., and Miyoshi, N., 2005, Correlation between Acoustic Cavitation Noise and Yield Enhancement of Sonochemical Reaction by Particle Addition, J. Phys. Chem. A, 109, 4869-4872.
  •  
  • 16. Zagzebski, J.A., 1996, Essentials of Ultrasound Physics, Mosby, St. Louis, Missouri, 7 p.
  •  

This Article

Correspondence to

  • E-mail: