• Risk Mitigation Measures in Arsenic-contaminated Soil at the Forest Area Near the Former Janghang Smelter Site: Applicability of Stabilization Technique and Follow-up Management Plan
  • An, Jinsung;Yang, Kyung;Kang, Woojae;Lee, Jung Sun;Nam, Kyoungphile;
  • Dept. of Civil & Environmental Engineering, Seoul National University;Environmental Assessment Group, Korea Environment Institute;JM Enviro Partners Co., Ltd.;Korea Environment Corporation;Dept. of Civil & Environmental Engineering, Seoul National University;
  • (구)장항제련소 주변 송림숲 등 식생지역에서의 비소오염토양 위해도 저감 조치: 안정화 공법 적용성 평가 및 사후관리 계획
  • 안진성;양경;강우재;이정선;남경필;
  • 서울대학교 건설환경공학부;한국환경정책평가연구원 환경평가본부;(주)JM Enviro Partners;한국환경공단;서울대학교 건설환경공학부;
References
  • 1. An, J., Jeong, S., Moon, H.S., Jho, E.H., and Nam, K., 2012, Prediction of Cd and Pb toxicity to Vibrio fischeri using biotic ligand-based models in soil, J. Hazard. Mater., 203-204, 69-76.
  •  
  • 2. An, J., Jho, E.H., and Nam, K., 2015, Effect of dissolved humic acid on the Pb bioavailability in soil solution and its consequence on ecological risk, J. Hazard. Mater., 286, 236-241.
  •  
  • 3. Becker, M. and Asch, Folkard, 2005, Iron toxicity in rice-conditions and management concepts, J. Plant Nutr. Soil Sci., 168, 558-573.
  •  
  • 4. Cornell, R.M. and Schwertmann, U., 1996, The Iron Oxides: Structures, Properties, Reactions, Occurrence and Uses, VCH publishers, New York, NY.
  •  
  • 5. Jeong, S., Moon, H.S., Yang, W., and Nam, K., 2016, Applicability of enhanced-phytoremediation for arsenic-contaminated soil, J. Soil Groundw. Environ., 21(1), 40-48.
  •  
  • 6. Kelley, M.E., Brauning, S., Schoof, R., and Ruby, M., 2002, Assessing Oral Bioavailability of Metals in Soil, Battelle Press, Columbus, OH.
  •  
  • 7. KMOE (Korea Ministry of Environment), 2015a, Soil Contaminant Risk Assessment Guidance, 2015-64.
  •  
  • 8. KMOE, 2016, Correction of Risk Assessment Report in the Forest Area Near the Former Janghang Smelter Site, 2016-397.
  •  
  • 9. KMOE, 2017a, Soil Environment Conservation Act, 14476.
  •  
  • 10. KMOE, 2017b, Official Test Methods of Soil Quality, 2017-22.
  •  
  • 11. KMOE, 2017c, Regulation on the Conservation of Groundwater Quality, 696.
  •  
  • 12. Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., and Maurice, C., 2006, Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil, Environ. Pollut., 144, 62-69.
  •  
  • 13. Kumpiene, J., Lagerkvist, A., and Maurice, C., 2008, Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - a review, Waste Manag., 28, 215-225.
  •  
  • 14. Lee, S., An, J., Kim, Y.-J., and Nam, K., 2011, Binding strengthassociated toxicity reduction by birnessite and hydroxyapatite in Pb and Cd contaminated sediments, J. Hazard. Mater., 186, 2117-2122.
  •  
  • 15. Miretzky, P. and Cirelli, A.F., 2010, Remediation of arsenic-contaminated soils by iron amendments: a review, Crit. Rev. Environ. Sci. Technol., 40, 93-115.
  •  
  • 16. Moore, T.J., Rightmire, C.M., and Vempati, R.K., 2000, Ferrous iron treatment of soils contaminated with arsenic-containing wood-preserving solution, Soil Sediment Contam., 9(4), 375-405.
  •  
  • 17. Mulligan, C.N., Yong, R.N., and Gibbs, B.F., 2001, An evaluation of technologies for the heavy metal remediation of dredged sediments, J. Hazard. Mater., 85, 145-163.
  •  
  • 18. Nejad, Z.D., Jung, M.C., and Kim, K.-H., 2017, Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology, Environ. Geochem. Health, DOI: 10.1007/s10653-017-9964-z.
  •  
  • 19. Nielsen, S.S., Petersen, L.R., Kjeldsen, P., and Jakobsen, R., 2011, Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment, Chemosphere, 84, 383-389.
  •  
  • 20. Pokrovsky, O.S., Schott, J., and Thomas, F., 1999, Dolomite surface speciation and reactivity in aquatic systems, Geochim. Cosmochim. Acta, 63, 3133-3143.
  •  
  • 21. Somasundaran, P. and Agar, G.E., 1967, The zero point of charge of calcite, J. Colloid Interface Sci., 24, 433-440.
  •  
  • 22. SSSA (Soil Science Society of America), 1996, Methods of Soil Analysis, Part 3- chemical methods, Soil cience Society of America Inc. and Americaln Society of Agronomy Inc., Wisconsin, USA.
  •  
  • 23. USEPA (U.S. Environmental Protection Agency), 1994, Method 1312: Synthetic precipitation leaching procedure, EPA/1312/SW-846.
  •  
  • 24. USEPA, 1996, Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices, EPA/3052/SW-846.
  •  
  • 25. USEPA, 2003, Method 9081: Cation-exchange capacity of soils (sodium acetate), EPA/9081/SW-846.
  •  
  • 26. USEPA, 2017, Superfund Remedy Report 15th Edition, EPA/542/R-17/001.
  •  
  • 27. Walkley, A. and Black, I.A., 1934, An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method, Soil Sci., 37, 29-37.
  •  
  • 28. Wenzel, W.W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., and Adriano, D.C., 2001, Arsenic fractionation in soils using an improved sequential extraction procedure, Anal. Chim. Acta., 436, 309-323.
  •  
  • 29. Yang, K., Kim, B.C., Yu, G., and Nam, K., 2016, Applicability of stabilization with iron oxides for arsenic-contaminated soil at the forest area near the former Janghang smelter site, J. Soil Groundw. Environ., 21(6), 14-21.
  •  

This Article

Correspondence to

  • E-mail: