• The Effect of Flow Rate on the Process of Immiscible Displacement in Porous Media
  • Park, Gyuryeong;Kim, Seon-ok;Lee, Minhee;Wang, Sookyun;
  • Department of Energy Resources Engineering, Pukyong National University;Department of Energy Resources Engineering, Pukyong National University;Department of Earth Environmental Science Engineering, Pukyong National University;Department of Energy Resources Engineering, Pukyong National University;
  • 다공성 매체 내 비혼성 대체 과정에서 주입 유량이 거동 양상에 미치는 영향
  • 박규령;김선옥;이민희;왕수균;
  • 부경대학교 에너지자원공학과;부경대학교 에너지자원공학과;부경대학교 지구환경과학과;부경대학교 에너지자원공학과;
References
  • 1. Bertrand, E., Bonn, D., Broseta, D., Dobb, H., Indekeu, J.O., Meunier, J., Ragil, K., and Shahidzadeh, N., 2002, Wetting on alkanes on water, J. Petrol. Sci. Eng., 33, 217-222.
  •  
  • 2. Cao, S.C., Dai, S., and Jung, J., 2016, Supercritical $CO_2$ and brine displacement in geological carbon sequestration: Micromodel and pore network simulation studies. Int. J. Greenh. Gas Con., 44, 104-114.
  •  
  • 3. Chalbaud, C., Robin, M., Lombard, J.M., Martin, F., Bertin, H., and Egermann, P., 2010, Brine/$CO_2$ interfacial properties and effects on $CO_2$ storage in deep saline aquifers, Oil Gas Sci. Technol., 65(4), 541-555.
  •  
  • 4. Chiquet, P., Broseta, D., and Thibeau, S., 2007, Wettability alteration of caprock minerals by carbon dioxide, Geofluids, 7, 112-122.
  •  
  • 5. Dicarlo, D.A., Sahni, A., and Blunt, M.J., 2000, The effect of wettability on three-phase relative permeability, Transp. Porous Media, 39, 347-366.
  •  
  • 6. IAPWS, 2008, Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater. The International Association for the Properties of Water and Steam, Berlin, Germany.
  •  
  • 7. Lenormand, R., Touboul, E., and Zarcone, C., 1988, Numerical models and experiments on immiscible displacements in porous media, J. Fluid Mech., 189, 165-187.
  •  
  • 8. Lenormand, R., 1990, Liquids in porous media, J. phys., 2, 79-88.
  •  
  • 9. Mekhtiev, S.I., Mamedov, A.A., Khalilov, Sh.Kh., and Aleskerov, M.A., 1975, Izv. Vyssh. Uchebn. Zaved. Neft. Gaz, 3, 64.
  •  
  • 10. Naderi, K. and Babadagli, T., 2011, Pore-scale investigation of immiscible displacement process in porous media under highfrequency sound waves, J. Fluid Mech., 680, 336-360.
  •  
  • 11. O'Carroll, D.M. and Sleep, B.E., 2007, Hot water flushing for immiscible displacement of a viscous NAPL, J. Contam. Hydrol., 91, 247-266.
  •  
  • 12. Wang, Y., Zhang, C.Y., Wei, N., Oostrom, M., Wietama, T.W., Li, X.C., and Bonneville, A., 2013, Experimental study of crossover from capillary to viscous fingering for supercritical $CO_2$-water displacement in a homogeneous pore network, Environ. Sci. Technol., 47(1), 212-218.
  •  
  • 13. Wildenschild, D., Armstrong, R.T., Herring, A.L., Young, I.M., and Carey, J.W., 2011, Exploring capillary trapping efficiency as a function of interfacial tension, viscosity, and flow rate, Energy Procedia, 4, 4945-4952.
  •  
  • 14. Yang, D., Tontiwachwuthikul, P., and Gu, Y., 2005, Interfacial interactions between reservoir brine and $CO_2$ at high pressure and elevated temperature, Energy Fuels, 19, 216-223.
  •  
  • 15. Zeppieri, S., Rodriguez, J., and Ramos, A.L., 2001, Interfacial tension of alkane + water systems, J. Chem. Eng. Data, 46, 1086-1088.
  •  
  • 16. Zheng, X., Mahabadi, N., Yun, T.S., and Jang, J., 2017, Effect of capillary and viscous force on $CO_2$ saturation and invasion pattern in the microfluidic chip, J. Geophys. Res.: Solid Earth, 122, 1634-1647.
  •  
  • 17. Zhang, C., Oostrom, M., Wietsma, T.W., Grate, J.W., and Warner, M.G., 2011, Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering, Energy Fuels, 25, 3493-3505.
  •  

This Article

Correspondence to

  • E-mail: