• Fate and Toxicity of Spilled Chemicals in Groundwater and Soil Environment III: organics
  • Jeong, Seulki;Moon, Hee Sun;Shin, Doyun;
  • Seoul Center, Korea Basic Science Institute;Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM);Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM);
  • 사고 누출 화학물질의 지하수 및 토양 환경 내 거동 및 환경 독성 특성 III: 유기화학물질을 중심으로
  • 정슬기;문희선;신도연;
  • 한국기초과학지원연구원 서울센터;한국지질자원연구원 지질환경연구본부;한국지질자원연구원 광물자원연구본부;
References
  • 1. Altschuh, J., Bruggemann, R., Santl, H., Eichinger, G., and Piringer, O.G., 1999, Henry's law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods, Chemosphere, 39, 1871-1887.
  •  
  • 2. Artiola-Fortuny, J. and Fuller, W.H., 1982, Adsorption of some monohydroxybenzene derivatives by soils, Soil Sci., 133, 18-26.
  •  
  • 3. ATSDR (Agency for Toxic Substances and Disease Registry), 2008, Toxicological profile for phenol, Division of Toxicology and Environmental Medicine/Applied Toxicology Branch, Atlanta, Georgia, USA, 185.
  •  
  • 4. ATSDR (Agency for Toxic Substances and Disease Registry), 1992, Toxicological profile for cresols, Division of Toxicology and Environmental Medicine/Applied Toxicology Branch, Atlanta, Georgia, USA, 165.
  •  
  • 5. Baker, M. and Mayfield, C., 1980, Microbial and non-biological decomposition of chlorophenols and phenol in soil, Water Air and Soil Poll., 13, 411-424.
  •  
  • 6. Bidleman, T.F., 1988, Atmospheric processes, Environ. Sci. Technol., 22, 361-367.
  •  
  • 7. Boyd, S.A. and Oz, E., 1983, Anaerobic biodegradation of phenolic compounds in digested sludge, Appl. Environ. Microb., 46, 50-54.
  •  
  • 8. Briggs, G.G., 1981, Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors, and the parachor, J. Agr. Food Chem., 29, 1050-1059.
  •  
  • 9. Brode, G.L., 1982, Phenolic Resins, in Encyclopedia of Chemical Technology, Kirk-Othmer Ed., 17, John Wiley, New York, NY.
  •  
  • 10. Canonica, S., Jans, U.R.S., Stemmler, K., and Hoigne, J., 1995, Transformation kinetics of phenols in water: photosensitization by dissolved natural organic material and aromatic ketones, Environ. Sci. Technol., 29, 1822-1831.
  •  
  • 11. Daubert, T.E., 1989, Physical and thermodynamic properties of pure chemicals: Data compilation.1st ed. Hemisphere Pub. Corp. New York.
  •  
  • 12. Dauble, D., Carlile, D.W., and Hanf, R.W., 1986, Bioaccumulation of fossil fuel components during single-compound and complex-mixture exposures of Daphnia magna, B. Environ. Contam. Toxi., 37, 125-132.
  •  
  • 13. DeGraeve, G.M., Overcast, R.L., and Bergman, H.L., 1980, Toxicity of underground coal gasification condenser water and selected constituents to aquatic biota, Arch. Environ. Con. Tox.. 9, 543-555.
  •  
  • 14. Devillers, J., 1988, Acute toxicity of cresols, xylenols, and trimethylphenols to Daphnia magna Straus 1820, Sci. Total Environ., 76, 79-83.
  •  
  • 15. ECB, 2006, European Union Risk Assessment Report: Phenol, Office for Official Publications of the European Communities, Luxembourg, 14.
  •  
  • 16. Ehrlich, G., Goerlitz, D.F., Godsy, E. M., and Hult, M.F., 1982, Degradation of phenolic contaminants in ground water by anaerobic bacteria: St. Louis Park, Minnesota, Groundwater, 20, 703-710.
  •  
  • 17. Environment Canada, 2000, Priority substances list assessment report: phenol, Environment Canada and Health Canada, Ottawa, Ontario, 10.
  •  
  • 18. Flyvbjerg, J., Arvin, E., Jensen, B.K., and Olsen, S.K., 1991, Biodegradation of oil- and creosote-related aromatic compounds under nitrate-reducing conditions, J. Contam. Hydrol., 12, 133-150.
  •  
  • 19. Franke, C., Studinger, G., Berger, G., Bohling, S., Bruckmann, U., Cohors-Fresenborg, D., and Johncke, U., 1994, The assessment of bioaccumulation, Chemosphere, 29, 1501-1514.
  •  
  • 20. Gaffney, J.S., Streit, G.E., Spall, W.D., and Hall, J.H, 1987, Beyond acid rain. Do soluble oxidants and organic toxinsinteract with $SO_2$ and $NO_x$ to increase ecosystem effects?, Environ. Sci. Technol., 21, 519-524.
  •  
  • 21. Geyer, A., Alicke, B., Ackermann, R., Martinez, M., Harder, H., Brune, W., di Carlo, P., Williams, E., Jobson, T., and Hall, S., 2003, Direct observations of daytime NO3: Implications for urban boundary layer chemistry, J. Geophys. Res.- Atmos., 108, 4368.
  •  
  • 22. Grosjean, D., 1991, Atmospheric fate of toxic aromatic compounds, Sci. Total Environ., 100, 367-414.
  •  
  • 23. Haider, K., Jagnow, G., Kohnen, R., and Lim, S.U., 1974, Degradation of chlorinated benzenes, phenols and cyclohexane derivatives by benzene and phenol utilizing soil bacteria under aerobic conditions (author's transl), Arch. Microbiol., 96, 183-200.
  •  
  • 24. Honghai, W.U., Yiying, L., Jiayi, W.U., Lixuan, Z., Dingcai, Z., and Juan, D.U., 2008, Surface adsorption of iron oxide minerals for phenol and dissolved organic matter, Front, Earth Sci., 15, 133-141.
  •  
  • 25. Howard, P.H., 1991, Handbook of Environmental Degradation Rates. Taylor & Francis,
  •  
  • 26. Kim, B.C., Park, K.S., Kim, S.D., and Gu, M.B., 2003, Evaluation of a high throughput toxicity biosensor and comparison with a Daphnia magna bioassay, Biosens. Bioelectron., 18, 821-826.
  •  
  • 27. Ko, C.H., Fan, C., Chiang, P.N., Wang, M.K., and Lin, K.C., 2007, p-Nitrophenol, phenol and aniline sorption by organoclays, J. Hazard. Mater., 149, 275-282.
  •  
  • 28. Kobayashi, K., Akitake, H., and Manabe, K., 1979, Relation between toxicity and accumulation of various chlorophenols in goldfish, Bull. Jap. Soc. Sci. Fish., 45, 173-175.
  •  
  • 29. Konopka, A. and Turco, R., 1991, Biodegradation of organic compounds in vadose zone and aquifer sediments, Appl. Environ. Microb., 57, 2260-2268.
  •  
  • 30. Korea Ministry of Environment, 2015, Chemical Control Act, Act No. 13035.
  •  
  • 31. Korea Statistics, 2013, Korean Social Trends 2013, Statistics Development Center.
  •  
  • 32. Laquer, F.C. and Manahan, S.E., 1987, Solution factors affecting the adsorption of phenol onto a siltstone, Chemosphere, 16, 1431-1445.
  •  
  • 33. Lee, Y.-G., Lee, J.-R., Chung, S.-y., and Park, J.-H., 2008, Sorption and desorption characteristics of atrazine in soils, J. KoSSGE, 13(2), 21-29.
  •  
  • 34. Leuenberger, C., Ligocki, M.P., and Pankow, J.F., 1985, Trace organic compounds in rain. 4. Identities, concentrations, and scavenging mechanisms for phenols in urban air and rain, Environ. Sci. Technol., 19, 1053-1058.
  •  
  • 35. Lewis, R.J., 1996, Sax's dangerous properties of industrial materials (9th ed), Van Nostrand Reinhold, New York, NY.
  •  
  • 36. Lewis, R.J., 2004, Sax's Dangerous Properties of Industrial Materials (11th ed), Wiley-Interscience, Wiley & Sons, Inc. Hoboken, NJ.
  •  
  • 37. Lide, D., 2000, CRC Handbook of Chemistry and Physics (81st ed), CRC Press, New York, NY.
  •  
  • 38. Loehr, R.C., 1989, Treatability potential for EPA listed hazardous wastes in soil; project summary, EPA.
  •  
  • 39. Loehr, R.C. and Krishnamoorthy, R., 1988, Terrestrial bioaccumulation potential of phenolic compounds, Hazard. Waste Hazard. Mater., 5, 109-119.
  •  
  • 40. Ludzack, F. and Ettinger, M., 1960, Chemical structures resistant to aerobic biochemical stabilization, J. Water Pollut. Control. Fed., 32, 1173-1200.
  •  
  • 41. Luh, M.D. and Baker, R.A., 1970, Organic sorption from aqueous solution by two clays. Proceedings of the 25th Industrial Waste Conference, Purdue University, Eng Bull Ext Series, 25, 534-542.
  •  
  • 42. Lyman, W.J., Reehl, W.F., and Rosenblatt, D.H., 1990, Handbook of chemical property estimation methods: environmental behavior of organic compounds, American Chemical Society, Washington, DC.
  •  
  • 43. Malusis, M.A., Maneval, J.E., Barben, E.J., Shackelford, C.D., and Daniels, E.R., 2010, Influence of adsorption on phenol transport through soil-bentonite vertical barriers amended with activated carbon, J. Contam. Hydrol., 116, 58-72.
  •  
  • 44. Nagel, R. and Urich, K., 1980, Kinetic studies on the elimination of different substituted phenols by goldfish (Carassius auratus), B. Environ. Contam. Toxi., 24, 374-378.
  •  
  • 45. NIER (National Institue of Environmental Research), 2008, Establishment and administration of research network for water management, Yeongsan River Environmental Research Center, National Institute of Environmental Research, Korea, 166-167.
  •  
  • 46. NIST (National Institute of Standards and Technology), NIST Chemistry WebBook. Phenol, 3-methyl- (108-39-4), NIST Gas Kinetics Database, Washington, DC. (2013 Release).
  •  
  • 47. NIOSH (National Institute for Occupational Safety and Health), 1978, Criteria for a recommended standard: Occupational exposure to Cresol National Institute for Occupational Safety and Health, Washington, D.C., USA, 59.
  •  
  • 48. OECD, 2003, SIDS Initial assessment report for SIAM 16, m-Cresol (CAS No. 108-39-4) and p-Cresol (CAS No. 106-44-5), Paris, France.
  •  
  • 49. Petoumenou, M.I., Pizzo, F., Cester, J., Fernandez, A., and Benfenati, E., 2015, Comparison between bioconcentration factor (BCF) data provided by industry to the European Chemicals Agency (ECHA) and data derived from QSAR models, Environ. Res., 142, 529-534.
  •  
  • 50. Rubin, H.E. and Alexander, M., 1983, Effect of nutrients on the rates of mineralization of trace concentrations of phenol and p-nitrophenol, Environ. Sci. Technol., 17, 104-107.
  •  
  • 51. Saglam, N. and Ural, M., 2005, Acute toxicity of M-cresol on the fry rainbow trout (Oncorhynchus mykiss Walbaum, 1792), Fresen. Environ. Bull., 14(6), 536-538.
  •  
  • 52. Scott, H.D., Wolf, D.C., and Lavy, T.L., 1983, Adsorption and Degradation of Phenol at Low Concentrations in Soil 1, J. Environ. Qual., 12, 91-95.
  •  
  • 53. Shiu, W.-Y., Ma, K.-C., Varhani kova, D., and Mackay, D., 1994, Chlorophenols and alkylphenols: A review and correlation of environmentally relevant properties and fate in an evaluative environment, Chemosphere, 29, 1155-1224.
  •  
  • 54. Swann, R.L., Laskowski, D.A., McCall, P.J., Vanderkuy, K., and Dishburger, H.J., 1983, A rapid method for the estimation of the environmental parameters octanol/water partition coefficient: Soil sorption constant, water to air ratio, and water solubility, Res. Rev., 85, 17-28.
  •  
  • 55. USEPA (United States Environmental Protection Agency), 2006a, 40 CFR 401.15-Toxic pollutants, Available from, as of Jan 23, 2019: https://www.govinfo.gov/
  •  
  • 56. USEPA (United States Environmental Protection Agency), 2006b, 40 CFR 302.4-Designation of hazardous substances, Available from, as of Jan 23, 2019: https://www.govinfo.gov/
  •  
  • 57. Verschueren, K., 1983, Handbook of environmental data on organic chemicals (2nd ed), Van Nostrand Reinhold Co, New York, NY.
  •  
  • 58. Verschueren, K., 2001, Handbook of Environmental Data on Organic Chemicals. Volumes 1-2 (4th ed), John Wiley & Sons. New York, NY.
  •  
  • 59. Vernot, E.H., MacEwen, J.D., Haun, C.C., and Kinkead, E.R., 1977, Acute toxicity and skin corrosion data for some organic and inorganic compounds and aqueous solutions, Toxicol. Appl. Pharmacol., 42, 417-423.
  •  
  • 60. Williams, M., 2013, The Merck Index: An encyclopedia of chemicals, drugs, and biologicals (15th ed), Royal Society of Chemistry, Cambridge, UK.
  •  
  • 61. WHO (World Health Organization), 1995, Environ Health Criteria 168: Cresols, Available from, as of Jan 23, 2019: http://www.inchem.org/documents/ehc/ehc/ehc168.htm
  •  
  • 62. Xing, B., McGill, W.B., Dudas, M.J., Maham, Y., and Hepler, L., 1994, Sorption of phenol by selected biopolymers: isotherms, energetics, and polarity, Environ. Sci. Technol., 28, 466-473.
  •  

This Article

Correspondence to

  • E-mail: