• Precipitation Decreases Methane Uptake in a Temperate Deciduous Forest
  • Khokhar, Nadar Hussain;Park, Jae-Woo;
  • Department of Civil and Environmental Engineering, Hanyang University;Department of Civil and Environmental Engineering, Hanyang University;
  • 온대 낙엽 활엽수림에서의 강수량에 따른 메탄 흡수 감소
  • 나다르 후세인 코카르;박재우;
  • 한양대학교 건설환경공학과;한양대학교 건설환경공학과;
References
  • 1. Ambus, P. and Christensen, S., 1995, Spatial and seasonal nitrous oxide and methane fluxes in Danish forest-, grassland-, and agroecosystems, J Environ Qual, 24(5), 993-1001.
  •  
  • 2. Borken, W., Davidson, E.A., Savage, K., Gaudinski, J., and Trumbore, S.E., 2003, Drying and wetting effects on $CO_2$ release from organic horizons, Soil Sci Soc Am J, 67, 1888-1897.
  •  
  • 3. Born, M., Dorr, H., and Levin, I., 1990, Methane consumption in aerated soils of the temperate zone, Tellus B, 42(1), 2-8.
  •  
  • 4. Bradford, M., Wookey, P., Ineson, P., and Lappin-Scott, H., 2001, Controlling factors and effects of chronic nitrogen and sulphur deposition on methane oxidation in a temperate forest soil, Soil Biol Biochem, 33(1), 93-102.
  •  
  • 5. Brumme, R. and Borken, W., 1999, Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem, Global Biogeochem Cy, 13(2), 493-501.
  •  
  • 6. Butterbach-Bahl, K., Gasche, R., Huber, C., Kreutzer, K., and Papen, H., 1998, Impact of N-input by wet deposition on Ntrace gas fluxes and $CH_4$-oxidation in spruce forest ecosystems of the temperate zone in Europe, Atmos Environ, 32(3), 559-564.
  •  
  • 7. Castro, M.S., Melillo, J.M., Steudler, P.A., and Chapman, J.W., 1994, Soil moisture as a predictor of methane uptake by temperate forest soils, Can J For Res, 24(9), 1805-1810.
  •  
  • 8. Castro, M.S., Steudler, P.A., Melillo, J.M., Aber, J.D., and Bowden, R.D., 1995, Factors controlling atmospheric methane consumption by temperate forest soils, Global Biogeochem Cycles, 9(1), 1-10.
  •  
  • 9. Czepiel, P., Crill, P., and Harriss, R., 1995, Environmental factors influencing the variability of methane oxidation in temperate zone soils, J Geophys Res Atmos, 100(D5), 9359-9364.
  •  
  • 10. Dalal, R., Allen, D., Livesley, S., and Richards, G., 2008, Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review, Plant and Soil, 309(1-2), 43-76.
  •  
  • 11. Dastane, N.G., 1978, Effective Rainfall in irrigated agriculture, Irrigation and Drainage Paper No. 25, Food and Agriculture Organization, Rome, Italy, www.fao.org/docrep/X5560E/x5560e00.htm#Contents.
  •  
  • 12. Davidson, E.A., Ishida, F.Y., and Nepstad, D.C., 2004, Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest, Global Change Biol, 10(5), 718-730.
  •  
  • 13. Diaz, M.A., Bown, H.E., Fuentes, J.P., and Martinez, A.M., 2018, Soils act as sinks or sources of $CH_4$ depending on air-filled porosity in sclerophyllous ecosystems in semiarid central Chile, Appl Soil Ecol, 130, 13-20.
  •  
  • 14. Dobbie, K. and Smith, K., 1996a, Comparison of $CH_4$ oxidation rates in woodland, arable and set aside soils, Soil Biol Biochem, 28(10-11), 1357-1365.
  •  
  • 15. Dobbie, K., Smith K., Prieme, A., Christensen, S., Degorska, A., and Orlanski, O., 1996b, Effect of land use on the rate of methane uptake by surface soils in northern Europe, Atmos Environ, 30(7), 1005-1011.
  •  
  • 16. Dutaur, L. and Verchot, L.V., 2007, A global inventory of the soil $CH_4$ sink, Global Biogeochem Cycles, 21(4), 1-9.
  •  
  • 17. Epron, D., Plain, C., Ndiaye, F.-K., Bonnaud, P., Pasquier, C., and Ranger, J., 2016, Effects of compaction by heavy machine traffic on soil fluxes of methane and carbon dioxide in a temperate broadleaved forest, Forest Ecol Manag, 382, 1-9.
  •  
  • 18. Gao, J., Zhou, W., Liu, Y., Zhu, J., Sha, L., Song, Q., Ji, H., Lin, Y., Fei, X., Bai, X., Zhang, X., Deng, Y., Deng, X., Yu, G., Zhang, J., Zheng, X., Grace, J., and Zhang, Y., 2018, Effects of Litter Inputs on $N_2O$ Emissions from a Tropical Rainforest in Southwest China, Ecosystems, 21(5), 1013-1026.
  •  
  • 19. Goldman, M.B., Groffman, P.M., Pouyat, R.V., McDonnell, M.J., and Pickett, S.T., 1995, $CH_4$ uptake and N availability in forest soils along an urban to rural gradient, Soil Biol Biochem, 27(3), 281-286.
  •  
  • 20. Gutlein, A., Zistl-Schlingmann, M., Becker, JN., Cornejo, N.S., Detsch, F., Dannenmann, M., Appelhans, T., Hertel, H., Kuzyakov, Y., and Kiese, R., 2017, Nitrogen turnover and greenhouse gas emissions in a tropical alpine ecosystem, Mt. Kilimanjaro, Tanzania, Plant and soil, 411(1-2), 243-259.
  •  
  • 21. IPCC, 2014, The Scientific Basis. Contribution of Working Group I to the Fifth Assessment Report of the intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535.
  •  
  • 22. Ishizuka, S., Sakata, T., and Ishizuka, K., 2000, Methane oxidation in Japanese forest soils, Soil Biol Biochem, 32(6), 769-777.
  •  
  • 23. Itoh, M., Ohte, N., and Koba, K., 2009, Methane flux characteristics in forest soils under an East Asian monsoon climate, Soil Biol Biochem, 41(2), 388-395.
  •  
  • 24. Jang, I., Lee, S., Hong, J.-H., and Kang, H., 2006, Methane oxidation rates in forest soils and their controlling variables: a review and a case study in Korea, Ecol Res, 21(6), 849-854.
  •  
  • 25. Jang, I., Lee, S., Zoh, K.-D., and Kang, H., 2011, Methane concentrations and methanotrophic community structure influence the response of soil methane oxidation to nitrogen content in a temperate forest, Soil Biol Biochem, 43(3), 620-627.
  •  
  • 26. Keller, M. and Reiners, W.A., 1994, Soilatmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica, Global Biogeochem Cycles, 8(4), 399-409.
  •  
  • 27. Kessavalou, A., Doran, J.W., Mosier, A.R., and Drijber, R.A., 1998, Greenhouse gas fluxes following tillage and wetting in a wheat-fallow cropping system, J Environ Qual, 27(5), 1105-1116.
  •  
  • 28. Kim, D.G., Thomas, A.D., Pelster, D., Rosenstock, T.S., and Sanz-Cobena, A., 2016, Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further research, Biogeosciences, 13(16), 4789-4809.
  •  
  • 29. Kim, D.-G., Vargas, R., Bond-Lamberty, B., and Turetsky, M., 2012, Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research, Biogeosciences, 9(7), 2459-2483.
  •  
  • 30. Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J.G., Dlugokencky, E.J., Bergamaschi, P., Bergmann, D., Blake, D.R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E.L., Houweling, S., Josse, B., Fraser, P.J., Krummel, P.B., Lamarque, J., Langenfelds, R.L., Quere, C.L., Naik, V., O'Doherty, S., Palmer, P.I., Pison, I., Plummer, D., Poulter, B., Prinn, R.G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D.T., Simpson, I.J., Spahni, R., Steele, L.P., Strode, S.A., Sudo, K., Szopa, S., van der Werf, G.R., Voulgarakis, A., Weele, M.V., Weiss, R.F., Williams, J.E., and Zeng, G., 2013, Three decades of global methane sources and sinks, Nat Geosci, 6(10), 813.
  •  
  • 31. Klemedtsson, A.K. and Klemedtsson, L., 1997, Methane uptake in Swedish forest soil in relation to liming and extra N-deposition, Biol. Fertil. Soils, 25(3), 296-301.
  •  
  • 32. Lee, X., Wu, H.J., Sigler, J., Oishi, C., and Siccama, T., 2004, Rapid and transient response of soil respiration to rain, Global Change Biol, 10, 1017-1026.
  •  
  • 33. Le Mer, J. and Roger, P., 2001, Production, oxidation, emission and consumption of methane by soils: A review, Eur J Soil Biol, 37(1), 25-50.
  •  
  • 34. Lessard, R., Rochette, P., Toppt, E., Patteyt, E., Desjardins, R.L., and Beaumont, G., 1994, Methane and carbon dioxide fluxes from poorly drained adjacent cultivated and forest sites, Can J Soil Sci, 74(2), 139-146.
  •  
  • 35. MacDonald, J.A., Skiba, U., Sheppard, L.J., Hargreaves, K.J., Smith, K.A., and Fowler, D., 1996, Soil environmental variables affecting the flux of methane from a range of forest, moorland and agricultural soils, Biogeochemistry, 34(3), 113-132.
  •  
  • 36. MacDonald, J.A., Skiba, U., Sheppard, L.J., Ball, B., Roberts, J.D., Smith, K.A., and Fowler, D., 1997, The effect of nitrogen deposition and seasonal variability on methane oxidation and nitrous oxide emission rates in an upland spruce plantation and moorland, Atmos. Environ, 31(22), 3693-3706.
  •  
  • 37. Moore, B., Kaur, G., Motavalli, P., Zurweller, B., and Svoma, B., 2018, Soil greenhouse gas emissions from agroforestry and other land uses under different moisture regimes in lower Missouri River Floodplain soils: a laboratory approach, Agroforest Syst, 92(2), 335-348.
  •  
  • 38. Nakano, T., Inoue, G., and Fukuda, M., 2004, Methane consumption and soil respiration by a birch forest soil in West Siberia, Tellus B Chem Phys Meteorol, 56(3), 223-229.
  •  
  • 39. Nakano, T., Sawamoto, T., Morishita, T., Inoue, G., and Hatano, R., 2004, A comparison of regression methods for estimating soil-atmosphere diffusion gas fluxes by a closed-chamber technique, Soil Biol Biochem, 36(1), 107-113.
  •  
  • 40. Ojima, D., Valentine, D., Mosier, A., Parton, W., and Schimel, D., 1993, Effect of land use change on methane oxidation in temperate forest and grassland soils, Chemosphere, 26(1-4), 675-685.
  •  
  • 41. Prieme, A. and Christensen S., 2001, Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils, Soil Biol Biochem, 33, 2083-2091.
  •  
  • 42. Prieme, A. and Christensen, S., 1997, Seasonal and spatial variation of methane oxidation in a Danish spruce forest, Soil Biol Biochem, 29(8), 1165-1172.
  •  
  • 43. Pulleman, M. and Tietema A., 1999, Microbial C and N transformation during drying and rewetting of coniferous forest floor material, Soil Biol Biochem, 31, 275-285.
  •  
  • 44. Reeburgh, W.S., 2003, Global methane biogeochemistry, Treatise on geochemistry, 4, 347.
  •  
  • 45. Rolston, D.E., 1986, Gas Flux, In: Klute, A. (ed.), Methods of Soil Analysis: Part 1-Physical and Mineralogical Methods, Soil Science Society of America, p. 1103-1119.
  •  
  • 46. Sitaula, B.K., Bakken, L.R., and Abrahamsen, G., 1995, $CH_4$ uptake by temperate forest soil: effect of N input and soil acidification, Soil Biol Biochem, 27(7), 871-880.
  •  
  • 47. Smith, K.A., Dobbie, K.E., Ball, B.C., Bakken, L.R., Sitaula, B.K., Hansen, S., Brumme, R., Borken, W., Christensen, S., Prieme, A., Fowler, D., Macdonald, J.A., Skiba, U., Klemedtsson, L., Kasimir-Klemedtsson, A., Degorska, A., and Orlanski, P., 2000, Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink, Global Change Biol, 6(7), 791-803.
  •  
  • 48. Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J., and Rey, A., 2003, Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes, Eur J Soil Sci, 54(4), 779-791.
  •  
  • 49. Sponseller, R.A., 2007, Precipitation pulses and soil $CO_2$ flux in a Sonoran Desert ecosystem, Global Change Biol, 13, 426-436.
  •  
  • 50. Steinkamp, R., Butterbach-Bahl, K., and Papen, H., 2001, Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany, Soil Biol Biochem, 33(2), 145-153.
  •  
  • 51. Tamai, N., Takenaka, C., Ishizuka, S., and Tezuka, T., 2003, Methane flux and regulatory variables in soils of three equalaged Japanese cypress (Chamaecyparis obtusa) forests in central Japan, Soil Biol Biochem, 35(5), 633-641.
  •  
  • 52. Teh, Y.A., Silver, W.L., and Conrad, M.E., 2005, Oxygen effects on methane production and oxidation in humid tropical forest soils, Global Change Biol, 11(8), 1283-1297.
  •  
  • 53. Vasconcelos, S.S., Zarin, D.J., Capanu, M., Littell, R., Davidson, E.A., Ishida, F.Y., Santos, E.B., Araujo, M.M., Aragao, D.V., Rangel-Vasconcelos, L.G.T., Oliveira, F.D.A., McDowell, W.H., and de Carvalho, C.J.R., 2004, Moisture and substrate availability constrain soil trace gas fluxes in an eastern Amazonian regrowth forest, Global Biogeochem Cycles, 18(2), 1-10
  •  
  • 54. Von Fischer, J.C. and Hedin, L.O., 2007, Controls on soil methane fluxes: Tests of biophysical mechanisms using stable isotope tracers, Global Biogeochem Cycles, 21(2), 1-9.
  •  
  • 55. Wang, Y., Hu, C., Ming, H., Oenema, O., Schaefer, D.A., Dong, W., Zhang, Y., and Li, X., 2014, Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain, PloS one, 9(6): e98445.
  •  
  • 56. Wei, H., Peng, C., Liu, S., Liu, X., Li, P., Song, H., Yuan, M., and Wang, M., 2018, Variation in Soil Methane Fluxes and Comparison between Two Forests in China, Forests, 9(4), 204.
  •  
  • 57. Weitz, A.M., Keller, M., Linder, E., and Crill, P., 1999, Spatial and temporal variability of nitrogen oxide and methane fluxes from a fertilized tree plantation in Costa Rica, J Geophys Res Atmos, 104(D23), 30097-30107.
  •  
  • 58. Whalen, S.C. and Reeburgh, W., 1996, Moisture and temperature sensitivity of $CH_4$ oxidation in boreal soils, Soil Biol Biochem., 28, 1271-1281.
  •  
  • 59. Yavitt, J., Simmons, J., and Fahey, T., 1993, Methane fluxes in a northern hardwood forest ecosystem in relation to acid precipitation, Chemosphere, 26(1-4), 721-730.
  •  
  • 60. Zhu, J., Mulder, J., Wu, L.P., Meng, X.X., Wang, Y.H., and Dorsch. P., 2013, Spatial and temporal variability of $N_2O$ emissions in a subtropical forest catchment in China, Biogeosciences, 10(3), 1309-1321.
  •  

This Article

Correspondence to

  • E-mail: