• Identification of Workflow for Potential Contaminants and their Physicochemical Properties
  • Kim, Yoon Ji;Kim, Youn-Tae;Han, Weon Shik;Lee, Seunghak;Choung, Sungwook;
  • Department of Earth System Sciences, Yonsei University;Institute of Natural Sciences, Yonsei University;Department of Earth System Sciences, Yonsei University;Water Cycle Research Center, Korea Institute of Science and Technology (KIST);Korea Basic Science Institute (KBSI);
  • 불특정 오염부지에 대한 잠재적 오염물질 선정 및 물리·화학적 특성 정보화
  • 김윤지;김연태;한원식;이승학;정성욱;
  • 연세대학교 지구시스템과학과;연세대학교 자연과학연구원;연세대학교 지구시스템과학과;한국과학기술연구원 물자원순환연구센터;한국기초과학지원연구원;
References
  • 1. ACD (Advanced Chemistry Development, Inc.), 2018, ACD/ILabs Software 2018.1, Advanced Chemistry Development Inc., Toronto.
  •  
  • 2. Anand, R.R., Aspandiar, M.F., and Noble, R.R.P., 2016, A review of metal transfer mechanisms through transported cover with emphasis on the vadose zone within the Australian regolith, Ore Geol. Rev., 73, 394-416.
  •  
  • 3. Aqueous Solutions LLC, 2012, The Geochemist's Workbench Professional Release 9.0, Aqueous Solutions LLC, Shampaign.
  •  
  • 4. Arvaniti, O.S. and Stasinakis, A.S., 2015, Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment, Sci. Total Environ., 524-525, 81-92.
  •  
  • 5. Bialk-Bielinska, A., Kumirska, J., Borecka, M., Caban, M., Paszkiewicz, M., Pazdro, K., and Stepnowski, P., 2016, Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples, J. Pharm. Biomed. Anal., 121, 271-296.
  •  
  • 6. Caldwell, D.J., D'Aco, V., Davidson, T., Kappler, K., Murray-Smith, R.J., Owen, S.F., Robinson, P.F., Simon-Hettich, B., Straub, J.O., and Tell, J., Environmental risk assessment of metformin and its transformation product guanylurea. II. Occurrence in surface waters of Europe and the United States and derivation of predicted no-effect concentrations, Chemosphere, 216, 855-865.
  •  
  • 7. ChemAxon, 2018, ChemAxon, https://chemaxon.com/products/calculators-and-predictors, [accessed 18.12.05]
  •  
  • 8. Choi, M., Park, J., Cho, D., Jang, D., Kim, M., and Choi, J., 2015, Tracing metal sources in core sediments of the artificial lake An-Dong, Korea: Concentration and metal association, Sci. Total Environ., 527-528, 384-392.
  •  
  • 9. ECHA (European Chemicals Agency), 2019, EC Inventory, https://echa.europa.eu/information-on-chemicals/ec-inventory, [accessed 19.01.08].
  •  
  • 10. Flora, S.J.S., 2015, Arsenic: Chemistry, occurrence, and exposure, In: S.J.S. Flora(ed.), Handbook of arsenic toxicology, Academic Press, p.1-49.
  •  
  • 11. Gonzalez-Acevedo, Z.I., Garcia-Zarate, M.A., and Flores-Lugo, P., 2019, Emerging contaminants and nutrients in a saline aquifer of a complex environment, Environ. Pollut., 244, 885-897.
  •  
  • 12. Gorny, J., Bilon, G., Lesven, L., Dumoulin, D., Made, B., and Noiriel, C., 2015, Arsenic behavior in river sediments under redox gradient: A review, Sci. Total Environ., 505, 423-434.
  •  
  • 13. Gurke, R., Rossler, M., Marx, C., Diamond, S., Schubert, S., Oertel, R., and Fauler, J., 2015, Occurrence and removal of frequently prescribed pharmaceuticals and corresponding metabolites in wastewater of a sewage treatment plant, Sci. Total Environ., 532, 762-770.
  •  
  • 14. Hansen, A.L., Donnelly, C., Refsgaard, J.C., and Karisson, I.B., 2018, Simulation of nitrate reduction in groundwater-An upscaling approach from small catchments to the Baltic Sea basin, Adv. Water Resour., 111, 58-69.
  •  
  • 15. Henderson, J.K., Falta, R.W., and Freedman, D.L., 2009, Simulation of the effect of remediation on EDB and 1,2-DCA plumes at sites contaminated by leaded gasoline, J. Contam. Hydrol., 108, 29-45.
  •  
  • 16. Jurado, A., Borges, A.V., Brouyere, S., 2017, Dynamics and emissions of $N_2O$ in groundwater: A review, Sci. Total Environ., 584-585, 207-218.
  •  
  • 17. Land, M., de Wit, C.A., Bignert, A., Cousins, I.T., Herzke, D., Johansson, J.H., and Martin, J.W., 2018, What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review, Environ. Evid., 7, 4
  •  
  • 18. Lee, I.S., Lee, S.H., and Oh, J.E., 2010, Occurrence and fate of synthetic musk compounds in water environment, Water Res, 44, 214-222.
  •  
  • 19. Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C., Moore, J., Perdrial, J., Sullivan, P., Thompson, A., Jin, L., Bolton, E.W., Brantley, S.L., Dietrich, W.E., Mayer, K.U., Steefel, C.I., Valocchi, A., Zachara, J., Kocar, B., Mcintosh, J., Tutolo, B.M., Kumar, M., Sonnenthal, E., Bao, C., and Beisman, J., 2017, Expanding the role of reactive transport models in critical zone processes, Earth-Sci. Rev., 165, 280-3001.
  •  
  • 20. Liu, J.L. and Wong, M.H., 2013, Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China, Environ. Int., 59, 208-224.
  •  
  • 21. Lombardi, L. and Carnevale, E.A., 2018, Evaluation of the environmental sustainability of different waste-to-energy plant configurations, Waste Manage., 73, 232-246.
  •  
  • 22. Lv, X., Sun, Y., Ji, R., Gao, B., Wu, J., Lu, Q., and Jiang, H., 2018, Physicochemical factors controlling the retension and transport of perfluorooctanoic acid (PFOA) in saturated sand and limestone porous media, Water Res., 141, 251-258.
  •  
  • 23. ME (Ministry of Environment), 2007, Comprehensive Measures for Sewage Sludge Management (Following the Entry into Force of the London Convention 1996 Protocol), Ministry of Environment (ME), Gwacheon.
  •  
  • 24. ME, 2013, Study on the Actual Use of PFCs (PFOS and its salt, and PFOSF) and Management Plan, National Institute of Environmental Research (NIER), Incheon.
  •  
  • 25. ME, 2018, Environmental Statistics Yearbook 2016, Ministry of Environment (ME), Sejong.
  •  
  • 26. MEL, 2018, Notification No. 2018-62 of MEL Exposure criteria for chemical substances and physical factors, Sejong.
  •  
  • 27. Needham, T.P. and Ghosh, U., 2019, Four decades since the ban, old urban wastewater treatment plant remains a dominant source of PCBs to the environment, Environ. Pollut., 246, 390-397.
  •  
  • 28. NICS (National Institute of Chemical Safety), 2018, KISChem, http://kischem.nier.go.kr/kischem2/wsp/main/main.jsp, [accessed 18.12.04]
  •  
  • 29. NICS, 2019, Pollutant release and transfer register information system, https://icis.me.go.kr/prtr/main.do, [accessed 19.01.08].
  •  
  • 30. NIER (National Institute of Environmental Research), 2006, Final Report: Study on the Residual Concentrations of Dioxins near the Waste Incineration Facilities (III), NIER, Incheon.
  •  
  • 31. NIER, 2018, NCiS, http://ncis.nier.go.kr/main.do, [accessed 18.12.04]
  •  
  • 32. NIER, 2019, Domestic GLP Status, http://ncis.nier.go.kr/bbs/bbsEtcView.do?bbsId=0009, [accessed 2019.01.08].
  •  
  • 33. Ozaki, N., Takamura, Y., Kojima, K., and Kindaichi, T., 2015, Loading and removal of PAHs in a wastewater treatment plant in a separated sewer system, Water Res., 80, 337-345.
  •  
  • 34. Palmer, D., Pou, J.O., Gonzalez-Sabate, L., and Diaz-Ferrero, J., 2018, Multiple linear regression based congener profile correlation to estimate the toxicity (TEQ) and dioxin concentration in atmospheric emissions, Sci. Total Environ., 622-623, 510-516.
  •  
  • 35. Park, J.E., Kim, S.K., Oh, J.K., Ahn, S.Y., Lee, M.N., Cho, C.R., and Kim, K.S., 2012, Study on concentrations and mass flows of perfluorinated compounds (PFCs) in a wastewater treatment plant, J. Kor. Soc. Environ. Eng., 34(5), 326-334.
  •  
  • 36. Park, Y.S., Hwang, M.S., Noh, H.R., Chun, K.S., and Kim, S.B., 2013, Development of chemical database and information system for safety management, Kor. J. Haz. Mat., 1(1), 58-64.
  •  
  • 37. Pekas, J.C., Bakke J.E., Giles, J.L., and Price, C.E., 1977, Rat intestinal metabolism of crufomate (4-tert-butyl-2-chlorophenyl methyl methylphosphoramidate), J. Environ. Sci. Health Part B,, 12(4), 261-268. DOI: 10.1080/03601237709372070
  •  
  • 38. Rodriguez-Navas, C., Rosende, M., and Miro, M., 2017, In-vitro physiologically based extraction of solid materials: Do we have reliable analytical methods for bioaccessibility studies of emerging organic contaminants?, Trends Anal. Chem., 91, 42-52.
  •  
  • 39. RSC (Royal Society of Chemistry), 2018, ChemSpider , http://www.chemspider.com/, [accessed 18.12.05]
  •  
  • 40. Seoul Metropolitan Government, 2014, Environment of Seoul, Seoul Metropolitan Government, Seoul.
  •  
  • 41. Steefel, C.I., DePaolo, D.J., and Lichtner, P.C., 2005, Reactive transport modeling: An essential tool and a new research approach for the Earth sciences, Earth Planet. Sci. Lett., 240, 539-558.
  •  
  • 42. Straub, J.O., Caldwell, D.J., Davidson, T., D'Aco, V., Kappler, K., Robinson, P.F., Simon-Hettich, B., and Tell, J., 2019, Environmental risk assessment of metformin and its transformation product guanylurea. I. Environmental fate, Chemosphere, 216, 844-854.
  •  
  • 43. Sun, J., Dai, X., Wang, Q., van Loosdrecht, M.C.M., and Ni, B.-J., 2019, Microplastics in wastewater treatment plants: Detection, occurrence and removal, Water Res., 152, 21-37.
  •  
  • 44. The Stockholm Convention, 2019, On Persistent Organic Pollutants, http://chm.pops.int/, [accessed 19.01.08].
  •  
  • 45. Tran, N.H., Reinhard, M., and Gin, K.Y.H., 2018, Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review, Water Res., 133, 182-207.
  •  
  • 46. US EPA (Environmental Protection Agency), 2012a, Estimation Programs Interface $Suite^{TM}$ for Microsoft(R) Windows, v 4.11, United States Environmental Protection Agency, Washington DC.
  •  
  • 47. US EPA, 2012b, On-line $HENRYWIN^{TM}$ User Guide, United States Environmental Protection Agency, Washington DC.
  •  
  • 48. US EPA, 2012c, On-line STPWIN on line Help, United States Environmental Protection Agency, Washington DC.
  •  
  • 49. US EPA, 2012d, Level III Fugacity Model Quick Guide, United States Environmental Protection Agency, Washington DC.
  •  
  • 50. US EPA, 2018a, ChemView , https://chemview.epa.gov/chemview, [accessed 18.12.05]
  •  
  • 51. US EPA, 2018b, Pesticide Chemical Search, https://iaspub.epa.gov/apex/pesticides/f?p=CHEMICALSEARCH:1:0::NO:1, [accessed 18.12.05]
  •  
  • 52. US EPA, 2018c, CompTox Chemistry Dashboard, https://comptox.epa.gov/dashboard, [accessed 18.12.05]
  •  
  • 53. US EPA, 2019, TSCA Chemical Substance Inventory, https://www.epa.gov/tsca-inventory, [accessed 19.01.08].
  •  
  • 54. US NLM (National Library of Medicine), 2018, TOXNET, https://toxnet.nlm.nih.gov/, [accessed 18.12.05]
  •  
  • 55. Vasudevan, M., Nambi, I.M., and Kumar, G.S., 2016, Scenario-based modelling of mass transfer mechanisms at a petroleum contaminated field site-numerical implications, J. Environ. Manage., 175, 9-19.
  •  
  • 56. Williams, A.J., Grulke, C.M., Edwards, J., McEachran, A.D., Mansouri, K., Baker, N.C., Patlewicz, G., Shah, I., Wambaugh, J.F., Judson, R.S., and Richard, A.M., 2017, The CompTox Chemistry Dashboard: a community data resource for environmental chemistry, J. Cheminform., 9, 61.
  •  
  • 57. Yasuda K, and Takahashi M, 1998, The emission of Polycyclic Aromatic Hydrocarbons from municipal solid waste incinerators during the combustion cycle, J. Air Waste Manag. Assoc., 48(5), 441-447.
  •  
  • 58. Yue, C., and Li, L.Y., 2013, Filling the gap: Estimating physicochemical properties of the full array of polybrominated diphenyl ethers (PBDEs), Environ. Pollut., 180, 312-323.
  •  
  • 59. Zhang, M., Buekens, A., and Li, X., 2016, Brominated flame retardants and the formation of dioxins and furans in fires and combustion, J. Hazard. Mat., 304, 26-39.
  •  
  • 60. Zhang, Y., Li, F., Zhang, Q., Li, J., and Liu, Q., 2014, Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes, Sci. Total Environ., 490, 213-222.
  •  

This Article

Correspondence to

  • E-mail: