• Changes of carbon-13 Isotope of Dissolved Inorganic Carbon Within Low-pH CO2-rich Water during CO2 Degassing
  • Chae, Gitak;Yu, Soonyoung;Kim, Chan Yeong;Park, Jinyoung;Bang, Haeun;Lee, Inhye;Koh, Dong-Chan;Shinn, Young Jae;Oh, Jinman;
  • Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea CO2 Storage Environmental Management (K-COSEM) Research Center, Korea University;Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea Institute of Geoscience and Mineral Resources (KIGAM);KNJ engineering Inc.;
  • pH가 낮은 탄산수의 CO2 탈기에 따른 용존탄소동위원소 변화
  • 채기탁;유순영;김찬영;박진영;방하은;이인혜;고동찬;신영재;오진만;
  • 한국지질자원연구원;고려대학교 지구환경과학과 K-COSEM 사업단;한국지질자원연구원;한국지질자원연구원;한국지질자원연구원;한국지질자원연구원;한국지질자원연구원;한국지질자원연구원;KNJ 엔지니어링(주);
References
  • 1. Abongwa, P.T., Atekwana, E.A., and Puckette, J., 2016, Dissolved inorganic carbon and stable carbon isotopic evolution of neutral mine drainage interacting with atmospheric $CO_2(g)$, Sci. Total Environ., 545, 57-66.
  •  
  • 2. Abongwa, P.T. and Atekwana, E.A., 2013, Assessing the temporal evolution of dissovled inorganic carbon in waters exposed to atmospheric $CO_2(g)$: A laboratory approach, J. Hydrol, 505, 250-265.
  •  
  • 3. Abongwa, P.T. and Atekwana, E.A., 2015, Controls on the chemical and isotopic composition of carbonate springs during evolution to saturation with respect to calcite, Chem. Geol., 404, 136-149.
  •  
  • 4. Appelo, C.A.J. and Postma, D., 2005, Geochemistry, Groundwater and Pollution, 2nd ed., A. A. Balkema Pub. London, UK.
  •  
  • 5. Assayag, N., Bickle, M., Kampman, N., and Becker, J., 2009, Carbon isotope constraint on $CO_2$ degassing in cold-water Geysers, Green River, Utah. Energy Proced., 1, 2361-2366.
  •  
  • 6. Becker, V., Myrttinen, A., Nightingale, M., Shevalier, M., Rock, L., Mayer, B., and Barth, J.A.C., 2015, Stable carbon and oxygen equilibrium isotope fractionation of supercritcal and subcritical $CO_2$ with DIC and $H_2O$ saline reservoir fluid, Int. J. Greenh. Gas Con., 39, 215-224.
  •  
  • 7. Butman, D. and Raymond, 2011, Significant efflux of carbon dioxide from stream and rivers in the United States, Nat. Geosci., 4, 839-842.
  •  
  • 8. Celia, M.A., 2017, Geological storage of captured carbon dioxide as a large-scale carbon mitigation option. Water Resour. Res., 53, 3527-3533.
  •  
  • 9. Chae, G., Yu, S., Jo, M., Choi, B.-Y., Kim, T., Koh, D.-C., Yun, Y.-Y., Yun, S.-T., and Kim, J.-C., 2016, Monitoring of $CO_2$-rich waters with low pH and low EC: An analogue study of $CO_2$ leakage into shallow aquifers, Environ. Earth Sci., 75, 390.
  •  
  • 10. Clark, I.D. and Fritz, P., 1997, Environmental Isotope in Hydrology, Lewis Pub., NY, US, 328.
  •  
  • 11. Deirmendjian, L. and Abril, G., 2018, Carbon dioxide degassing at the groundwater-stream-atmosphere interface: isotopic equilibration and hydrological mass balance in a sandy watershed, J. Hydrol., 558, 129-143.
  •  
  • 12. Doctor, D.H., Kendall, C., Sebestyen, S.D., Shanley, J.B., Ohte N., and Boyer, E.W., 2008, Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream, Hydrol. Process., 22, 2410-2423.
  •  
  • 13. Drever, J.I., 1997, The Geochemistry of Natural Waters: Surface and Groundwater Environments, 3rd ed., Prentice Hall, Upper Saddle River, NJ, US.
  •  
  • 14. Fritz, P. and Fontes, J.Ch., 1980, Handbook of Environmental Isotope Geochemistry, Elsevier Scientific Pub. Co., Amsterdam, Netherlands.
  •  
  • 15. Guo, W., 2009, Carbonate clumped isotope thermometry: application to carbonaceous chondrites and effects of kinetic isotope fractionation, Thesis for degree of doctor, California Institute of Technology, Pasadena, CA, US.
  •  
  • 16. Jenkins, C., Chadwick, A., and Hovorka, S.D., 2015, The state of the art in monitoring and verification-Ten years on, Int. J. Greenh. Gas Con., 40, 312-349.
  •  
  • 17. Jo, M., Chae, G.-T., Koh, D.-C., Yu, Y., and Choi, B.-Y., 2009, A comparison study of alkalinity and total carbon measurements in $CO_2$-rich water, J. Soil Groundw. Environ., 14, 1-13.
  •  
  • 18. Johnson, G., Mayer, B., Shevalier, M., Nightingale, M., and Hutcheon, I., 2011, Tracing the movement of $CO_2$ injected into a mature oilfiled using carbon isotope abundance ratio: The example of the Pembina Cardium $CO_2$ monitoring porject, Int. J. Greenh. Gas Con., 5, 933-941.
  •  
  • 19. Kim, C.Y., Han W.S., Park, E., Jeong, J., and Xu, T., 2018, $CO_2$ leakage-induced contamination in shallow potable aquifer and associated health risk assessment, Geofluids, 2018.
  •  
  • 20. Kusakabe, M., Tanyileke, G.Z., McCord, S.A., and Schladow, S.G., 2000, Recent pH and $CO_2$ profiles at Lake Nyos and Monoun, Cameroon: implications for the degassing strategy and its numerical simulation, J. Volcanol. Geoth. Res., 97, 241-260.
  •  
  • 21. Lee, D.S., Park, K.G., Lee, C., and Choi, S.-J., 2018, Distributed temperature sensing monitoring of well completion processes in a $CO_2$ geological storage demonstration site, Sensors, 18(12), 4239.
  •  
  • 22. Mayer, B., Humez, P., Becker, V., Dalkahh, C., Rock, L., Myrttinen, A., and Barth, J.A.C., 2015, Assessing the usefulness of the isotopic composition of $CO_2$ for leakage monitoring at $CO_2$ storage sites: A review, Int. J. Greenh. Gas Con., 37, 46-60.
  •  
  • 23. NETL, 2012, Best practices for monitoring, varification, and accounting of $CO_2$ stored in deep geologic formation - 2012 update, DOE/NETL-2012/1568. https://www.netl.doe.gov/File%20Library/Research/Carbon%20Seq/Reference%20Shelf/MVA_Document.pdf [accessed 17.12.11].
  •  
  • 24. Oh, Y.-Y., Yun, S.-T., Yu, S., Kim, H.-J., and Jun, S.-C., 2019, A novel wavelet-based approach to characterize dynamic environmental factors controlling short-term soil surface $CO_2$ flux: Application to a controlled $CO_2$ release test site (EIT) in South Korea, Geoderma, 337, 76-90.
  •  
  • 25. Paneth, P. and O'Leary, M.H., 1985, Mechanism of the spontaneous dehydration of bicarbonate ion, J. Am. Chem. Soc., 107, 7381-7384.
  •  
  • 26. Park, J., Sung, K.-S., Yu S., Chae, G., Lee, S., Yum, B.-W., Park, K.G., and Kim, J.-C., 2016, Distribution and behavior of soil $CO_2$ in Pohang area: Baseline survey and preliminary interpretation in a candidate geological $CO_2$ storage site, J. Soil Groundw. Environ., 21, 49-60.
  •  
  • 27. Parkhurst, D.L. and Appelo, C.A.J., 1999, User's Guide to PHREEQC (version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, USGS, Water-Resource Investigation Report 99-4259.
  •  
  • 28. Pearson Jr., F.J., Fischer, D.W., and Plummer, L.N., 1978, Correction of ground-water chemistry and carbon isotopic composition for effect of $CO_2$ outgassing, Geochim. Cosmochim. Ac., 42, 1799-1807.
  •  
  • 29. Romanak, K.D., Wolaver, B,. Yang, C., Sherk, G.W., Dale, J., Dobeck, L.M., and Spangler, L.H., 2014, Process-based soil gas leakage assessment at the Kerr Farm: Comparison of results to leakage proxies at ZERT and Mt. Etna, Int. J. Greenh. Gas Con., 30, 42-57.
  •  
  • 30. Stumm, W. and Morgan, J.J., 1996, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed., John Wiley & Sons, Inc., NY, US, 1022.
  •  
  • 31. Sung, K.S., Yu, S.Y., Choi, B.Y., Park, J.Y., Han, R.H., Kim, J.C., Park, K.G., and Chae, G.T., 2015, Applicability of the Multi-Channel Surface-soil $CO_2$-concentration Monitoring (SCM) System as a Surface Soil $CO_2$ Monitoring Tool, J. Soil Groundw. Environ., 20(1), 41-55.
  •  
  • 32. Szaran J., 1998, Carbon isotope fractionation between dissolved and gaseous carbon dioxide, Chem. Geol., 150, 331-337.
  •  
  • 33. UNFCCC, 2017, The Paris Agreement, UNFCCC Secr., Bonn, Germany, http://unfccc.int/paris_agreement/items/9485.php [accessed 19.04.18].
  •  
  • 34. van Geldern, R., Shulte, P., Mader, M., Baier, A., and Barth, J.A.C., 2015, Spatial and temporal variations of $pCO_2$, dissolved inorganic carbon and stable isotopes along a temperate karstic watercourse, Hydrol. Process., 29, 3423-3440.
  •  
  • 35. Zhang, J., Quay, P.D., and Wilbur, D.O., 1995, Carbon isotope fractionation during gas-water exchange and dissolution of $CO_2$, Geochim. Cosmochim. Ac., 59, 107-114.
  •  
  • 36. Zuo, L., Zhang, C., Falta, R.W., and Benson, S.M., 2013, Micromodel investigations of $CO_2$ exolution from carbonatd water in sedimentary rocks, Adv. Water Resour., 53, 188-197.
  •  

This Article

Correspondence to

  • E-mail: