Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea CO2 Storage Environmental Management (K-COSEM) Research Center, Korea University;Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea Institute of Geoscience and Mineral Resources (KIGAM);KNJ engineering Inc.;
1. Abongwa, P.T., Atekwana, E.A., and Puckette, J., 2016, Dissolved inorganic carbon and stable carbon isotopic evolution of neutral mine drainage interacting with atmospheric CO2(g), Sci. Total Environ., 545, 57-66.
2. Abongwa, P.T. and Atekwana, E.A., 2013, Assessing the temporal evolution of dissovled inorganic carbon in waters exposed to atmospheric CO2(g): A laboratory approach, J. Hydrol, 505, 250-265.
3. Abongwa, P.T. and Atekwana, E.A., 2015, Controls on the chemical and isotopic composition of carbonate springs during evolution to saturation with respect to calcite, Chem. Geol., 404, 136-149.
4. Appelo, C.A.J. and Postma, D., 2005, Geochemistry, Groundwater and Pollution, 2nd ed., A. A. Balkema Pub. London, UK.
5. Assayag, N., Bickle, M., Kampman, N., and Becker, J., 2009, Carbon isotope constraint on CO2 degassing in cold-water Geysers, Green River, Utah. Energy Proced., 1, 2361-2366.
6. Becker, V., Myrttinen, A., Nightingale, M., Shevalier, M., Rock, L., Mayer, B., and Barth, J.A.C., 2015, Stable carbon and oxygen equilibrium isotope fractionation of supercritcal and subcritical CO2 with DIC and H2O saline reservoir fluid, Int. J. Greenh. Gas Con., 39, 215-224.
7. Butman, D. and Raymond, 2011, Significant efflux of carbon dioxide from stream and rivers in the United States, Nat. Geosci., 4, 839-842.
8. Celia, M.A., 2017, Geological storage of captured carbon dioxide as a large-scale carbon mitigation option. Water Resour. Res., 53, 3527-3533.
9. Chae, G., Yu, S., Jo, M., Choi, B.-Y., Kim, T., Koh, D.-C., Yun, Y.-Y., Yun, S.-T., and Kim, J.-C., 2016, Monitoring of CO2-rich waters with low pH and low EC: An analogue study of CO2 leakage into shallow aquifers, Environ. Earth Sci., 75, 390.
10. Clark, I.D. and Fritz, P., 1997, Environmental Isotope in Hydrology, Lewis Pub., NY, US, 328.
11. Deirmendjian, L. and Abril, G., 2018, Carbon dioxide degassing at the groundwater-stream-atmosphere interface: isotopic equilibration and hydrological mass balance in a sandy watershed, J. Hydrol., 558, 129-143.
12. Doctor, D.H., Kendall, C., Sebestyen, S.D., Shanley, J.B., Ohte N., and Boyer, E.W., 2008, Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream, Hydrol. Process., 22, 2410-2423.
13. Drever, J.I., 1997, The Geochemistry of Natural Waters: Surface and Groundwater Environments, 3rd ed., Prentice Hall, Upper Saddle River, NJ, US.
14. Fritz, P. and Fontes, J.Ch., 1980, Handbook of Environmental Isotope Geochemistry, Elsevier Scientific Pub. Co., Amsterdam, Netherlands.
15. Guo, W., 2009, Carbonate clumped isotope thermometry: application to carbonaceous chondrites and effects of kinetic isotope fractionation, Thesis for degree of doctor, California Institute of Technology, Pasadena, CA, US.
16. Jenkins, C., Chadwick, A., and Hovorka, S.D., 2015, The state of the art in monitoring and verification-Ten years on, Int. J. Greenh. Gas Con., 40, 312-349.
17. Jo, M., Chae, G.-T., Koh, D.-C., Yu, Y., and Choi, B.-Y., 2009, A comparison study of alkalinity and total carbon measurements in CO2-rich water, J. Soil Groundw. Environ., 14, 1-13.
18. Johnson, G., Mayer, B., Shevalier, M., Nightingale, M., and Hutcheon, I., 2011, Tracing the movement of CO2 injected into a mature oilfiled using carbon isotope abundance ratio: The example of the Pembina Cardium CO2 monitoring porject, Int. J. Greenh. Gas Con., 5, 933-941.
19. Kim, C.Y., Han W.S., Park, E., Jeong, J., and Xu, T., 2018, CO2 leakage-induced contamination in shallow potable aquifer and associated health risk assessment, Geofluids, 2018.
20. Kusakabe, M., Tanyileke, G.Z., McCord, S.A., and Schladow, S.G., 2000, Recent pH and CO2 profiles at Lake Nyos and Monoun, Cameroon: implications for the degassing strategy and its numerical simulation, J. Volcanol. Geoth. Res., 97, 241-260.
21. Lee, D.S., Park, K.G., Lee, C., and Choi, S.-J., 2018, Distributed temperature sensing monitoring of well completion processes in a CO2 geological storage demonstration site, Sensors, 18(12), 4239.
22. Mayer, B., Humez, P., Becker, V., Dalkahh, C., Rock, L., Myrttinen, A., and Barth, J.A.C., 2015, Assessing the usefulness of the isotopic composition of CO2 for leakage monitoring at CO2 storage sites: A review, Int. J. Greenh. Gas Con., 37, 46-60.
23. NETL, 2012, Best practices for monitoring, varification, and accounting of CO2 stored in deep geologic formation - 2012 update, DOE/NETL-2012/1568. https://www.netl.doe.gov/File%20Library/Research/Carbon%20Seq/Reference%20Shelf/MVA_Document.pdf [accessed 17.12.11].
24. Oh, Y.-Y., Yun, S.-T., Yu, S., Kim, H.-J., and Jun, S.-C., 2019, A novel wavelet-based approach to characterize dynamic environmental factors controlling short-term soil surface CO2 flux: Application to a controlled CO2 release test site (EIT) in South Korea, Geoderma, 337, 76-90.
25. Paneth, P. and O'Leary, M.H., 1985, Mechanism of the spontaneous dehydration of bicarbonate ion, J. Am. Chem. Soc., 107, 7381-7384.
26. Park, J., Sung, K.-S., Yu S., Chae, G., Lee, S., Yum, B.-W., Park, K.G., and Kim, J.-C., 2016, Distribution and behavior of soil CO2 in Pohang area: Baseline survey and preliminary interpretation in a candidate geological CO2 storage site, J. Soil Groundw. Environ., 21, 49-60.
27. Parkhurst, D.L. and Appelo, C.A.J., 1999, User's Guide to PHREEQC (version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, USGS, Water-Resource Investigation Report 99-4259.
28. Pearson Jr., F.J., Fischer, D.W., and Plummer, L.N., 1978, Correction of ground-water chemistry and carbon isotopic composition for effect of CO2 outgassing, Geochim. Cosmochim. Ac., 42, 1799-1807.
29. Romanak, K.D., Wolaver, B,. Yang, C., Sherk, G.W., Dale, J., Dobeck, L.M., and Spangler, L.H., 2014, Process-based soil gas leakage assessment at the Kerr Farm: Comparison of results to leakage proxies at ZERT and Mt. Etna, Int. J. Greenh. Gas Con., 30, 42-57.
30. Stumm, W. and Morgan, J.J., 1996, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed., John Wiley & Sons, Inc., NY, US, 1022.
31. Sung, K.S., Yu, S.Y., Choi, B.Y., Park, J.Y., Han, R.H., Kim, J.C., Park, K.G., and Chae, G.T., 2015, Applicability of the Multi-Channel Surface-soil CO2-concentration Monitoring (SCM) System as a Surface Soil CO2 Monitoring Tool, J. Soil Groundw. Environ., 20(1), 41-55.
32. Szaran J., 1998, Carbon isotope fractionation between dissolved and gaseous carbon dioxide, Chem. Geol., 150, 331-337.
33. UNFCCC, 2017, The Paris Agreement, UNFCCC Secr., Bonn, Germany, http://unfccc.int/paris_agreement/items/9485.php [accessed 19.04.18].
34. van Geldern, R., Shulte, P., Mader, M., Baier, A., and Barth, J.A.C., 2015, Spatial and temporal variations of pCO2, dissolved inorganic carbon and stable isotopes along a temperate karstic watercourse, Hydrol. Process., 29, 3423-3440.
35. Zhang, J., Quay, P.D., and Wilbur, D.O., 1995, Carbon isotope fractionation during gas-water exchange and dissolution of CO2, Geochim. Cosmochim. Ac., 59, 107-114.
36. Zuo, L., Zhang, C., Falta, R.W., and Benson, S.M., 2013, Micromodel investigations of CO2 exolution from carbonatd water in sedimentary rocks, Adv. Water Resour., 53, 188-197.