• Characteristics of Microbial Arsenic Oxidation under Denitrification Environment
  • Oh, Seolran;Kim, Dong-Hun;Moon, Hee Sun;
  • Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM);Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM);Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM);
  • 미생물에 의한 탈질 과정 동안의 비소 동시 산화 특성 평가
  • 오설란;김동훈;문희선;
  • 한국지질자원연구원 지질환경연구본부 지하수연구센터;한국지질자원연구원 지질환경연구본부 지하수연구센터;한국지질자원연구원 지질환경연구본부 지하수연구센터;
References
  • 1. Ahn, J.S., Ko, K.-S., Lee, J.-S., and Kim, J.-Y., 2005, Characteristics of natural arsenic contamination in groundwater and its occurrences, Econ. Environ. Geol., 38, 547-561.
  •  
  • 2. Bahar, M.M., Megharaj, M., and Naidu, R., 2013, Bioremediation of arsenic-contaminated water: Recent advances and future prospects, Water Air Soil Pollut., 224, 1722.
  •  
  • 3. Bazylinski, D.A. and Blakemore, R.P., 1983, Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum, Appl. Environ. Microbiol., 46, 1118-1124.
  •  
  • 4. Benkovitz, C.M., Scholtz, M.T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E.C., Spiro, P.A., Logan, J.A., and Graedel, T., 1996, Global gridded inventories of anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res.-Atmos., 101, 29239-29253.
  •  
  • 5. Bulut, G., Yenial, U., Emiroglu, E., and Sirkeci, A.A., 2014, Arsenic removal from aqueous solution using pyrite, J. Clean Prod., 84, 526-532.
  •  
  • 6. Chatterjee, S. and De, S., 2017, Adsorptive removal of arsenic from groundwater using chemically treated iron ore slime incorporated mixed matrix hollow fiber membrane, Sep. Purif. Technol., 179, 357-368.
  •  
  • 7. Das, S., Liu, C.-C., Jean, J.-S., Lee, C.-C., and Yang, H.-J., 2016, Effects of microbially induced transformations and shift in bacterial community on arsenic mobility in arsenic-rich deep aquifer sediments, J. Hazard. Mater., 310, 11-19.
  •  
  • 8. Dong, L., Zinin, P.V., Cowen, J.P., and Ming, L.C., 2009, Iron coated pottery granules for arsenic removal from drinking water, J. Hazard. Mater., 168, 626-632.
  •  
  • 9. Fytianos, K. and Christophoridis, C., 2004, Nitrate, Arsenic and Chloride Pollution of Drinking Water in Northern Greece. Elaboration by Applying GIS, Environ. Monit. Assess., 93, 55-67.
  •  
  • 10. Ghurye, G.L., Clifford, D.A., and Tripp, A.R., 1999, Combined arsenic and nitrate removal by ion exchange, J. Am. Water Work Assoc., 91, 85-96.
  •  
  • 11. Goldberg, S., 2002, Competitive adsorption of arsenate and arsenite on oxides and clay minerals, Soil Sci. Soc. Am. J., 66, 413-421.
  •  
  • 12. Gu, Y., Van Nostrand, J.D., Wu, L., He, Z., Qin, Y., Zhao, F.-J., and Zhou, J., 2017, Bacterial community and arsenic functional genes diversity in arsenic contaminated soils from different geographic locations, PloS one, 12, e0176696.
  •  
  • 13. Kim, G.B., Choi, D.H., Yoon, P.S., and Kim, K.Y., 2010, Trends of groundwater quality in the areas with a high possibility of pollution, J Korea Geo-Environ Soc, 11, 5-16.
  •  
  • 14. Hoeft, S.E., Lucas, F.o., Hollibaugh, J.T., and Oremland, R.S., 2002, Characterization of microbial arsenate reduction in the anoxic bottom waters of mono lake, California, Geomicrobiol. J., 19, 23-40.
  •  
  • 15. Li, B., Deng, C., Zhang, D., Pan, X., Al-misned, F.A., and Mortuza, M.G., 2016, Bioremediation of Nitrate- and Arsenic-Contaminated Groundwater Using Nitrate-Dependent Fe(II) Oxidizing Clostridiumsp. Strain pxl2, Geomicrobiol. J., 33, 185-193.
  •  
  • 16. Li, B., Pan, X., Zhang, D., Lee, D.-J., Al-Misned, F. A., and Mortuza, M.G., 2015, Anaerobic nitrate reduction with oxidation of Fe(II) by Citrobacter Freundii strain PXL1 - a potential candidate for simultaneous removal of As and nitrate from groundwater, Ecol. Eng., 77, 196-201.
  •  
  • 17. Lin, Y.-F., Jing, S.-R., Wang, T.-W., and Lee, D.-Y., 2002, Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands, Environ. Pollut., 119, 413-420.
  •  
  • 18. Liu, C.-W., Lin, K.-H., and Kuo, Y.-M., 2003, Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan, Sci. Total Environ., 313, 77-89.
  •  
  • 19. Min, J., Boulos, L., Brown, J., Cornwell, D., Gouellec, Y., Coppola, E., Baxley, J., Rine, J., Herring, J., and Vural, N., 2006, Innovative Alternatives to Minimize Arsenic, Perchlorate, and Nitrate Residuals, Water Environment Research Foundation, Denver, CO.
  •  
  • 20. Mohapatra, D., Mishra, D., Chaudhury, G.R., and Das, R.P., 2007, Arsenic adsorption mechanism on clay minerals and its dependence on temperature, Korean J. Chem. Eng., 24, 426-430.
  •  
  • 21. Nerenberg, R. and Rittmann, B., 2004, Hydrogen-based, hollowfiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants, Water Sci. Technol., 49, 223-230.
  •  
  • 22. Nguyen, V.K., Tran, H.T., Park, Y., Yu, J., and Lee, T., 2017, Microbial arsenite oxidation with oxygen, nitrate, or an electrode as the sole electron acceptor, J. Ind. Microbiol. Biotechnol., 44, 857-868.
  •  
  • 23. Okereke, A. and Montville, T.J., 1992, Nisin dissipates the proton motive force of the obligate anaerobe Clostridium sporogenes PA 3679, Appl. Environ. Microbiol., 58, 2463-2467.
  •  
  • 24. Osborne, F. and Ehrlich, H., 1976, Oxidation of arsenite by a soil isolate of Alcaligenes, J. Appl. Bacteriol., 41, 295-305.
  •  
  • 25. Philips, S. and Taylor, M.L., 1976, Oxidation of arsenite to arsenate by Alcaligenes faecalis, Appl. Environ. Microbiol., 32, 392-399.
  •  
  • 26. Rhine, E.D., Ni Chadhain, S.M., Zylstra, G.J., and Young, L.Y., 2007, The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers, Biochem. Biophys. Res. Commun., 354, 662-667.
  •  
  • 27. Santini, J.M., Sly, L.I., Schnagl, R.D., and Macy, J.M., 2000, A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies, Appl. Environ. Microbiol., 66, 92-97.
  •  
  • 28. Santini, J.M., Sly, L.I., Schnagl, R.D., and Macy, J.M., 2000, A New Chemolithoautotrophic Arsenite-Oxidizing Bacterium Isolated from a Gold Mine: Phylogenetic, Physiological, and Preliminary Biochemical Studies, Appl. Environ. Microbiol., 66, 92-97.
  •  
  • 29. Shakya, A.K. and Ghosh, P.K., 2018, Simultaneous removal of arsenic and nitrate in absence of iron in an attached growth bioreactor to meet drinking water standards: Importance of sulphate and empty bed contact time, J. Clean Prod., 186, 304-312.
  •  
  • 30. Sharma, V.K. and Sohn, M., 2009, Aquatic arsenic: toxicity, speciation, transformations, and remediation, Environ Int, 35, 743-759.
  •  
  • 31. Shin, K.-H. and Cha, D.K., 2008, Microbial reduction of nitrate in the presence of nanoscale zero-valent iron, Chemosphere, 72, 257-262.
  •  
  • 32. Silver, S. and Phung, L.T., 2005, Genes and Enzymes Involved in Bacterial Oxidation and Reduction of Inorganic Arsenic, Appl. Environ. Microbiol., 71, 599-608.
  •  
  • 33. Upadhyaya, G., Jackson, J., Clancy, T.M., Hyun, S.P., Brown, J., Hayes, K.F., and Raskin, L., 2010, Simultaneous removal of nitrate and arsenic from drinking water sources utilizing a fixedbed bioreactor system, Water Res., 44, 4958-4969.
  •  
  • 34. Zahid, A., Hassan, M.Q., Balke, K.-D., Flegr, M., and Clark, D.W., 2008, Groundwater chemistry and occurrence of arsenic in the Meghna floodplain aquifer, southeastern Bangladesh, Environ. Geol., 54, 1247-1260.
  •  
  • 35. Xie, Z., Wang, J., Wei, X., Li, F., Chen, M., Wang, J., and Gao, B., 2018, Interactions between arsenic adsorption/desorption and indigenous bacterial activity in shallow high arsenic aquifer sediments from the Jianghan Plain, Central China, Sci. Total Environ., 644, 382-388.
  •  
  • 36. Xiu, W., Guo, H., Shen, J., Liu, S., Ding, S., Hou, W., Ma, J., and Dong, H., 2016, Stimulation of Fe(II) Oxidation, Biogenic Lepidocrocite Formation, and Arsenic Immobilization by Pseudogulbenkiania Sp. Strain 2002, Environ. Sci. Technol., 50, 6449-6458.
  •  
  • 37. Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., Van Cleemput, O., Berglund, M., and Boeckx, P., 2009, Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater, Water Res., 43, 1159-1170.
  •  
  • 38. Zhang, J., Zhao, S., Xu, Y., Zhou, W., Huang, K., Tang, Z., and Zhao, F.J., 2017, Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils, Environ. Sci. Technol., 51, 4377-4386.
  •  
  • 39. Zhang, Y. and Angelidaki, I., 2013, A new method for in situ nitrate removal from groundwater using submerged microbial desalination-denitrification cell (SMDDC), Water Res., 47, 1827-1836.
  •  
  • 40. Zou, Q., An, W., Wu, C., Li, W., Fu, A., Xiao, R., Chen, H., and Xue, S., 2018, Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition, Environ. Chem. Lett., 16, 615-622.
  •  

This Article

Correspondence to

  • E-mail: