• o-DGT as a Biomimic Surrogate to Assess Phytoaccumulation of Phenanthrene in Contaminated Soils 
  • Jiyeon Choi·Won Sik Shin*

  • School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Korea

  • o-DGT를 생체모사 대표물질로 이용한 오염토양에서 phenanthrene의 식물축적 평가
  • 최지연·신원식*

  • 경북대학교 건설환경에너지공학부

References
  • 1. Al-Farsi, R.S., Ahmed, M., Al-busaidi, A., and Choudri, B.S., 2017, Translocation of pharmaceuticals and personal care products (PPCPs) into plant tissues: A review, Emerg. Contam., 3, 132-137.
  •  
  • 2. Bade, R., Oh, S., and Shin, W.S., 2012, Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations, Sci. Total Environ., 416, 127-136.
  •  
  • 3. Brinch, U.C., Ekelund, F., and Jacobsen, C.S., 2002, Method for spiking soil samples with organic compounds (PAHs), Appl. Environ. Microbiol., 68, 1808-1816.
  •  
  • 4. Cachada, A., Pereira, R., Silva, E.F., and Duarte, A.C., 2014, The prediction of PAHs bioavailability in soils using chemical methods: State of the art and future challenges, Sci. Total Environ., 472, 463-480.
  •  
  • 5. Connell, D.W. and Markwell, R.D., 1990, Bioaccumulation in the soils to earthworm system, Chemosphere, 20, 91-100.
  •  
  • 6. Cui, X., Hunter, W., Yang, Y., Chen, Y., and Gan, J., 2010, Bioavailability of sorbed phenanthrerne and permethrin in sediments to chronomus tentans, Auqt. Toxicol., 98, 83-90.
  •  
  • 7. Davison, W. and Zhang, H., 2012, Progress in understanding the use of diffusive gradients in thin films (DGT) - back to basics, Environ. Chem., 9, 1-13.
  •  
  • 8. Dodgen, L.K., Ueda, A., Wu, X., Parker, D.R., and Gan, J., 2015, Effect of transpiration on plant accumulation and translocation of PPCP/EDCs, Environ. Pollut., 198, 144-153.
  •  
  • 9. Gao, Y. and Zhu, L., 2004, Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils, Chemosphere, 55, 1169-1178.
  •  
  • 10. Gomez-Eyles, J.L., Jonker, M.T.O., Hodson, M.E., and Collins, C.D., 2011, Passive samplers provide a better prediction of PAH bioaccumulation in earthworms and plant roots than exhaustive, mild solvent, and cyclodextrin extractions, Environ. Sci. Technol., 46, 962-969.
  •  
  • 11. Khan, S., Aijun, L., Zhang, S., Hu, Q., and Zhu, Y.-G., 2008, Accumulation of polycylic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation, J. Hazard. Mater., 152, 506-515.
  •  
  • 12. Li, H., Sheng, G., Chiou, C.T., and Xu, O., 2005, Relation of organic contaminant equilibrium sorption and kinetic uptake in plants, Environ. Sci. Technol., 39, 4864-4870.
  •  
  • 13. Lin, C.H., Huang, X.W., Kolbanovskii, A., Hingerty, B.E., Amin, S., Broyde, S., Geacitov, N.E., and Patel, D.J., 2001, Molecular topology of polycyclic aromatic carcinogens determines DNA adduct conformation: A link to tumorigenic activity, J. Mol. Biol., 306, 1059-1080.
  •  
  • 14. Liste, H.-H. and Alexander, M., 2002, Butanol extraction to predict bioavailability of PAHs in soil, Chemosphere, 46, 1011-1017.
  •  
  • 15. Liu, K., Pan, X., Han, Y., Tang, F., and Yu, Y., 2012, Estimating the toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) using in situ pore water concentrations in different soils, Sci. Total Environ., 438, 26-32.
  •  
  • 16. Markwell, R.D., Connell, D.W., and Gabric, A.J., 1989, Bioaccumulation of lipophilic compounds from sediment by oligochaetes, Water Res., 23, 1443-1450.
  •  
  • 17. Mei, X., Lin, D.H., Xu, Y., Wu, Y.Y., and Tu, Y.Y., 2009, Effects of phenanthrene on chemical composition and enzyme activity in fresh tea leaves, Food Chem., 115, 569-573.
  •  
  • 18. Ministry of Environment, 2018, Environmental Health Act, Sejong, Korea.
  •  
  • 19. Mundus, S., Lombi, E., Holm, P.E., Zhang, H., and husted, S., 2012, Assessing the plant availability of manganese in soils using diffusive gradients in thin films (DGT), Geoderma, 183-184, 92-99.
  •  
  • 20. Ni, H., Zhou, W., and Zhu, L., 2014, Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants, J. Environ. Sci., 26, 1071-1079.
  •  
  • 21. Nicola, F., Maisto, G., Prati, M.V., and Alfani, A., 2008, Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L., Environ. Pollut., 153, 376-383.
  •  
  • 22. OECD, 2007, OECD Draft guideline for testing chemicals: predatory mite production test in soil (hypoaspis (Geolaelaps) aquifers), OECD Publishing: Paris.
  •  
  • 23. Oleszczuk, P., Hale, S.E., Lehmann, J., and Cornelissen, G., 2012, Activated carbon and biocahr amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge, Bioresour. Technol., 111, 84-91.
  •  
  • 24. Paulik, L.B., Smith, B.W., Bergmann, A.J., Sower, G.L., Forsberg. N.D., Teeguarden, J.G., and Anderson, K.A., 2016, Passive samplers accurately predict PAH levels in resident crayfish, Sci. Total Environ., 544, 782-791.
  •  
  • 25. Shin, W.S., 2007, Scientific feasibility on the risk-based clean-up and management of contaminated sites, J. Soil. Groundw. Environ., 12, 1-35.
  •  
  • 26. Simonich, S.L. and Hites, R.A., 1994, Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons, Environ. Sci. Technol., 28, 297-303.
  •  
  • 27. Su, Y.-H. and Zhu, Y.-G., 2008, Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution, Environ. Pollut., 155, 359-365.
  •  
  • 28. Tang, J., Robertson, B.K., and Alexander, M., 1999, Chemical-extraction methods to estimate bioavailability of DDT, DDE, and DDD in soil, Environ. Sci. Technol., 33, 4346-4351.
  •  
  • 29. Tao, Y., Zhang, S., Wang, Z., and Cristie, P., 2008, Predicting bioavailability of PAHs in soils to wheat roots with triolein-embedded cellulose acetate membranes and comparison with chemical extraction, J. Agric. Food Chem., 56, 10817-10823.
  •  
  • 30. USEPA, 1994, Method 3541: Automated Soxhlet Extraction, Test Methods for the Evaluation of Solid Waste: Laboratory Manual Physical Chemical Methods. SW 846, Washington, DC, USA, Office of Solid Waste.
  •  
  • 31. USEPA, 2007, Method 3541a: Pressurized Fluid Extraction, Test Methods for the Evaluation of Solid Waste: Laboratory Manual Physical Chemical Methods. SW 846, Washington, DC, USA, Office of Solid Waste.
  •  
  • 32. Wu, X., Ernst, F., Conkle, J.L., and Gan, J., 2013, Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables, Environ. Int., 60, 15-22.
  •  
  • 33. Yang, Z. and Zhu, L., 2007, Performance of the partition-limited model on predicting ryegrass uptake of polycyclic aromatic hydrocarbons, Chemosphere, 67, 402-409.
  •  
  • 34. Zhang, H. and Davison, W., 1995, Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution, Anal. Chem., 67, 3391-3400.
  •  
  • 35. Zhang, M. and Zhu, L., 2009, Sorption of polycyclic aromatic hydrocarbons to carbohydrates and lipids of ryegrass root and implications for a sorption prediction model, Environ. Sci. Technol., 43, 2740-2745.
  •  
  • 36. Zhang, D., Zhu, Y., Xie, X., Han, C., Zhang, H., Zhou, L., Li, M., Xu, G., Jiang, L., and Li, A., 2019, Application of diffusive gradients in thin-films for in-situ monitoring of nitrochlorobenzene compounds in aquatic environments, Water Res., 157, 292-300.
  •  

This Article

  • 2019; 24(6): 16-25

    Published on Dec 31, 2019

  • 10.7857/JSGE.2019.24.6.016
  • Received on Dec 5, 2019
  • Revised on Dec 5, 2019
  • Accepted on Dec 17, 2019

Correspondence to

  • Won Sik Shin
  • School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Korea

  • E-mail: wshin@knu.ac.kr