• A Feasibility Test on an Artificial Recharge System for one Representative Greenhouse Complex Zone, Korea
  • Byung Sun Lee1·Wooho Myoung1·Sebong Oh2·Seong-Chun Jun3·Jize Piao4·Sung-Ho Song1*

  • 1Rural Research Institute, Korea Rural Community Corporation
    2Gyeoungnam Regional Headquarter, Korea Rural Community Corporation
    3Geogreen21 Co., Ltd.
    4Dept. of Earth System Sciences, Yonsei Univ.

  • 시설농업지역 지하수 인공함양 실증시험 연구
  • 이병선1·명우호1·오세봉2·전성천3·박길택4·송성호1*

  • 1한국농어촌공사 농어촌연구원
    2한국농어촌공사 경남지역본부
    3(주)지오그린21
    4연세대학교 지구시스템과학과

References
  • 1. Bierschenk, W.H., 1963, Determination well efficiency by multiple step-drawdown tests, Intern. Assoc. Sci. Hydrol., 64, 493-507.
  •  
  • 2. Bouwer, H. and Rice, R.C., 1976, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or par-tially penetrating wells, Water Resour. Reser., 12(3), 423-428.
  •  
  • 3. Cooper, H.H.Jr. and Jacob, C.E., 1946, A generalized graphical method for evaluating formation constants and summarizing well field history, Trans, Amer. Geophy. Union, 27(4), 526-534.
  •  
  • 4. Fetter, C.W., 2001, Applied Hydrogeology 4th Ed, Prentice Hall, Upper Saddle River.
  •  
  • 5. Hernández, M., Camprovín, P., Bernat, X., Massana, J., and Castelló, J., 2015, ASR en Barcelona: Nuevo régimen de operación para hacer frente a nuevos escenarios [ASR in Barcelona: New operating regime to deal with new scenarios]. IV Jornadas de Ingeniería del Agua La precipitación y los procesos erosivos, Cordoba, October 2015.
  •  
  • 6. Jacob, C.E., 1947, Drawdown test to determine effective radius of artesian well, Trans. Amer. Soc. Civil Engrs., 112, 1047-1064.
  •  
  • 7. KIGAM (Korea Institute of Geoscience and Mineral Resources), 2011, Application of analysis technique and modeling for coupled groundwater-surface water flow system, KIGAM, 491 p.
  •  
  • 8. Kim, H.S., Bary, J., and Elton, L., 2003, Groundwater securing and supplying techniques using the aquifer storage and recovery (ASR) – Case study on actual groundwater supply using the ASR, Oregon state, USA, Proceedings of the Korean society of soil and groundwater environment 2003 fall meeting, Jeju.
  •  
  • 9. KOSIS (Korean Statistics Information Service), 2019, https://kosis.kr/ [accessed 2019.08.16]
  •  
  • 10. KRC (Korea Rural Community Corporation), 2014, A study on the supply plan of clean groundwater and groundwater heat for facili-ties in agricultural complex, KRC, Naju, 221 p.
  •  
  • 11. KRC (Korea Rural Community Corporation), 2017, A report on the artificial recharge and recovery to Danmok greenhouse facilities zone, Jinju, Gyongsangnamdo, Korea, KRC, Naju, 164 p.
  •  
  • 12. KREI (Korea Rural Economic Institute), 2019, Agriculture outlook 2019 Korea, 834 p.
  •  
  • 13. Lee, H., Koo, M., and Oh, S., 2019, Modeling stream-aquifer interactions under seasonal groundwater pumping and managed aquifer recharge, Groundw., 57(2), 216-225.
  •  
  • 14. MAFRA (Ministry of Agriculture, Food, and Rural Affairs) and KRC (Korea Rural Community Corporation), 2015, A report on feasibility for an artificial recharge and recovery to greenhouse facilities zones, MAFRA and KRC, Sejong, 268 p.
  •  
  • 15. MAFRA (Ministry of Agriculture, Food, and Rural Affairs) and KRC (Korea Rural Community Corporation), 2018, A annual report on the rural groundwater management network system, Korea, MAFRA and KRC, Sejong, 173 p.
  •  
  • 16. Malisa, M.L. and Randolph, R.B., 1986, Methods and computer program documentation for determining anisotropic transmissivity tensor components of two-dimensional ground-water flow: U.S. Geological Survey Open-File Report 86-227, 64 p.
  •  
  • 17. Maliva, R.G., Guo, W., and Missimer, T.M., 2006, Aquifer storage and recovery: Recent hydrogeological advances and system per-formance. Water Environ. Res., 78(13), 2428-2435.
  •  
  • 18. MLTMA (Ministry of Land, Transportation, and Maritime Affairs) and K-water, 2009, A practical guide on developing groundwater well and its operating facilities, MLTMA and K-water, Gwacheon, 191 p.
  •  
  • 19. MOLIT (Ministry of Land, Infrastructure, and Transportation), 2017, The national groundwater management plan 2nd Ed. (2017~2026), MOLIT, Sejong, 168 p.
  •  
  • 20. Moon, S.H., Kim, Y., Jeong, Y.Y., and Hwang, J., 2016, Groundwater-stream watger interaction induced by water curtain cultivation activity in Sangdae-ri area of Cheong-ju, Korea, Econ. Environ. Geol., 49(2), 105-120.
  •  
  • 21. MSIT (Ministry of Science and ICT) and KIGAM (Korea Institute of Geoscience and Mineral Resources), 2013, Development of intergrated core technologies in aquifer recharge system for groundwater sustainability, MSIT and KIGAM, Sejong, 261 p.
  •  
  • 22. MST (Ministry of Science and Technology) and K-water, 2004, Sustatinable groundwater development and artificial recharge, MST and K-water, Gwacheon, 850 p.
  •  
  • 23. Rao, R. and Giridhar, MVSS., 2014, Rooftop rainwater harvesting for recharging shallow groundwater, J. Geol. Geosci., 3(6), 1-6.
  •  
  • 24. Song, S.H., Lee, B.S., and An, J.G., 2016, Quantitative evaluation for improvement effects of performance after mechanical rehabilita-tion treatments on agricultural groundwater well, J. Soil Groundw. Environ., 21(4), 42-49.
  •  
  • 25. Stuyfzand, P.J., 2016, Histroy of managed aquifer recharge in the Netherlands, Proceedings of IAH (International Association of Hydrogeologists) 43rd congress, Montpellier, France.
  •  
  • 26. Theis, C.V., 1935, The relation between the lowering of piezometric surface and the rate and duration of discharge of a well using ground water storage, Trans. Amer. Geophy. Union, 16(2), 519-524.
  •  

This Article

  • 2020; 25(1): 12-24

    Published on Mar 31, 2020

  • 10.7857/JSGE.2020.25.1.012
  • Received on Oct 19, 2019
  • Revised on Nov 14, 2019
  • Accepted on Feb 13, 2020

Correspondence to

  • Sung-Ho Song
  • Rural Research Institute, Korea Rural Community Corporation

  • E-mail: shsong@ekr.or.kr