• Effect of Repetitive Redox Transitions to Soil Bacterial Community and its Potential Impact on the Cycles of Iron and Arsenic 
  • Sujin Park1·Sanghyun Kim1·Hyeonyong Chung1·Sun Woo Chang2·Heesun Moon3·Kyoungphile Nam1*

  • 1Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea
    2Korea Institute of Civil Engineering and Building Technology, Gyeonggi-Do 10223, Korea
    3Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea

  • 비소오염토양에서 반복적인 Redox 환경 변화가 토양 미생물 군집과 비소 및 철의 순환에 미치는 영향
  • 박수진1·김상현1·정현용1·장선우2·문희선3·남경필1*

  • 1서울대학교 건설환경공학부
    2한국건설기술연구원
    3한국지질자원연구원

References
  • 1. Ahmed, B., Cao, B., McLean, J.S., Ica, T., Dohnalkova, A., Istanbullu, O., Paksoy, A., Fredrickson J.K., and Beyenal, H., 2012, Fe (III) reduction and U (VI) immobilization by Paenibacillus sp. strain 300A, isolated from Hanford 300A subsurface sediments. Appl. Environ. Microbiol., 78(22), 8001-8009.
  •  
  • 2. Bachate, S.P., Cavalca, L., and Andreoni, V., 2009, Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and char-acterization of arsenate-reducing strains. J. Appl. Microbiol., 107(1), 145-156.
  •  
  • 3. Benz, M., Schink, B., and Brune, A., 1998, Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl. Environ. Microbiol., 64(11), 4507-4512.
  •  
  • 4. Bishop, M.E., Dong, H., Glasser, P., Briggs, B.R., Pentrak, M., Stucki, J.W., Boyanov, M.I., Kemner, K.M., and Kovarik, L., 2019, Reactivity of redox cycled Fe-bearing subsurface sediments towards hexavalent chromium reduction. Geochim. Cosmochim. Acta, 252, 88-106.
  •  
  • 5. Boucher, D., Jardillier, L., and Debroas, D., 2006, Succession of bacterial community composition over two consecutive years in two aquatic systems: a natural lake and a lake-reservoir. FEMS Microbiol. Ecol., 55(1), 79-97.
  •  
  • 6. Burnol, A., Garrido, F., Baranger, P., Joulian, C., Dictor, M.-C., Bodénan, F., Morin, G., and Charlet, L., 2007, Decoupling of arse-nic and iron release from ferrihydrite suspension under reducing conditions: a biogeochemical model. Geochem. Trans., 8(1), 12.
  •  
  • 7. Calatayud, M., Gimeno-Alcañiz, J.V., Vélez, D., and Devesa, V., 2014, Trivalent arsenic species induce changes in expression and levels of proinflammatory cytokines in intestinal epithelial cells. Toxicol. Lett., 224(1), 40-46.
  •  
  • 8. Clague, J.C., Stenger, R., and Morgenstern, U., 2019, The influence of unsaturated zone drainage status on denitrification and the redox succession in shallow groundwater. Sci. Total Environ., 660, 1232-1244.
  •  
  • 9. Couture, R.-M., Charlet, L., Markelova, E., Madé, B.t., and Parsons, C.T., 2015, On–off mobilization of contaminants in soils during redox oscillations. Environ. Sci. Technol., 49(5), 3015-3023.
  •  
  • 10. D'Hondt, S., J©ªrgensen, B.B., Miller, D.J., Batzke, A., Blake, R., Cragg, B.A., Cypionka, H., Dickens, G.R., Ferdelman, T., and Hinrichs, K.-U., 2004, Distributions of microbial activities in deep subseafloor sediments. Science, 306(5705), 2216-2221.
  •  
  • 11. de Zamaroczy, M., Delorme, F., and Elmerich, C., 1989, Regulation of transcription and promoter mapping of the structural genes for nitrogenase (nifHDK) of Azospirillum brasilense Sp7. Mol. Gen. Genet., 220(1), 33-42.
  •  
  • 12. DeAngelis, K.M., Silver, W.L., Thompson, A.W., and Firestone, M.K., 2010, Microbial communities acclimate to recurring changes in soil redox potential status. Environ. Microbiol., 12(12), 3137-3149.
  •  
  • 13. Dobbin, P.S., Carter, J.P., García-Salamanca San Juan, C., von Hobe, M., Powell, A.K., and Richardson, D.J., 1999, Dissimilatory Fe (III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe (III) maltol enrichment. FEMS Microbiol. Lett., 176(1), 131-138.
  •  
  • 14. Duan, Y., Schaefer, M.V., Wang, Y., Gan, Y., Yu, K., Deng, Y., and Fendorf, S., 2019, Experimental constraints on redox-induced arsenic release and retention from aquifer sediments in the central Yangtze River Basin. Sci. Total Environ., 649, 629-639.
  •  
  • 15. Falkowski, P.G., Fenchel, T., and Delong, E.F., 2008, The microbial engines that drive Earth's biogeochemical cycles. Science, 320(5879), 1034-1039.
  •  
  • 16. Harvey, C.F., Swartz, C.H., Badruzzaman, A., Keon-Blute, N., Yu, W., Ali, M.A., Jay, J., Beckie, R., Niedan, V., and Brabander, D., 2002, Arsenic mobility and groundwater extraction in Bangladesh. Science, 298(5598), 1602-1606.
  •  
  • 17. Hong, H., Kim, S.-J., Min, U.-G., Lee, Y.-J., Kim, S.-G., Jung, M.-Y., Seo, Y.-S., and Rhee, S.-K., 2015, Geosporobacter ferrire-ducens sp. nov., an anaerobic iron-reducing bacterium isolated from an oil-contaminated site. Antonie Van Leeuwenhoek, 107(4), 971-977.
  •  
  • 18. Islam, F.S., Gault, A.G., Boothman, C., Polya, D.A., Charnock, J.M., Chatterjee, D., and Lloyd, J.R., 2004, Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430(6995), 68-71.
  •  
  • 19. Jackson, C.R., Dugas, S.L., and Harrison, K.G., 2005, Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biol. Biochem., 37(12), 2319-2322.
  •  
  • 20. Jiang, S., Lee, J.-H., Kim, D., Kanaly, R.A., Kim, M.-G., and Hur, H.-G., 2013, Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities. Environ. Sci. Technol., 47(15), 8616-8623.
  •  
  • 21. Jung, H.B., Zheng, Y., Rahman, M.W., Rahman, M.M., and Ahmed, K.M., 2015, Redox zonation and oscillation in the hyporheic zone of the Ganges-Brahmaputra-Meghna Delta: implications for the fate of groundwater arsenic during discharge. Appl. Geochem., 63, 647-660.
  •  
  • 22. Lara, J., González, L.E., Ferrero, M., Díaz, G.C., Pedrós-Alió, C., and Demergasso, C., 2012, Enrichment of arsenic transforming and resistant heterotrophic bacteria from sediments of two salt lakes in Northern Chile. Extremophiles, 16(3), 523-538.
  •  
  • 23. Lee, J.H., Fredrickson, J.K., Plymale, A.E., Dohnalkova, A.C., Resch, C.T., McKinley, J.P., and Shi, L., 2015, An autotrophic H 2-oxidizing, nitrate-respiring, T c (VII)-reducing A cidovorax sp. isolated from a subsurface oxic-anoxic transition zone. Environ. Microbiol. Rep., 7(3), 395-403.
  •  
  • 24. Lin, Z., Wang, X., Wu, X., Liu, D., Yin, Y., Zhang, Y., Xiao, S., and Xing, B., 2018, Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system. Environ. Pollut., 243, 1015-1025.
  •  
  • 25. Loreau, M., 2001, Microbial diversity, producer–decomposer interactions and ecosystem processes: a theoretical model. Proc. R. Soc. London, Ser. B, 268(1464), 303-309.
  •  
  • 26. Lovley, D., 2006, Dissimilatory Fe (III)-and Mn (IV)-reducing prokaryotes. The Prokaryotes: Volume 2: Ecophysiology and Bio-chemistry, 635-658.
  •  
  • 27. Mandal, B.K. and Suzuki, K.T., 2002, Arsenic round the world: a review. Talanta, 58(1), 201-235.
  •  
  • 28. Mejia, J., Roden, E.E., and Ginder-Vogel, M., 2016, Influence of oxygen and nitrate on Fe (hydr) oxide mineral transformation and soil microbial communities during redox cycling. Environ. Sci. Technol., 50(7), 3580-3588.
  •  
  • 29. Meng, X., Dupont, R.R., Sorensen, D.L., Jacobson, A.R., and McLean, J.E., 2017, Mineralogy and geochemistry affecting arsenic solubility in sediment profiles from the shallow basin-fill aquifer of Cache Valley Basin, Utah. Appl. Geochem., 77, 126-141.
  •  
  • 30. Möller, L., Laas, P., Rogge, A., Goetz, F., Bahlo, R., Leipe, T., and Labrenz, M., 2019, Sulfurimonas subgroup GD17 cells accumu-late polyphosphate under fluctuating redox conditions in the Baltic Sea: possible implications for their ecology. The ISME journal, 13(2), 482-493.
  •  
  • 31. Muntau, M., Schulz, M., Jewell, K.S., Hermes, N., Hübner, U., Ternes, T., and Drewes, J.E., 2017, Evaluation of the short-term fate and transport of chemicals of emerging concern during soil-aquifer treatment using select transformation products as intrinsic re-dox-sensitive tracers. Sci. Total Environ., 583, 10-18.
  •  
  • 32. Newman, D.K. and Banfield, J.F., 2002, Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Sci-ence, 296(5570), 1071-1077.
  •  
  • 33. Noël, V., Boye, K., Kukkadapu, R.K., Li, Q., and Bargar, J.R., 2019, Uranium storage mechanisms in wet-dry redox cycled sediments. Water Res., 152, 251-263.
  •  
  • 34. Oliveira, A., Pampulha, M., Neto, M., and Almeida, A., 2009, Enumeration and characterization of arsenic-tolerant diazotrophic bacte-ria in a long-term heavy-metal-contaminated soil. Water, Air, Soil Pollut., 200(1-4), 237-243.
  •  
  • 35. Oremland, R.S. and Stolz, J.F., 2005, Arsenic, microbes and contaminated aquifers. Trends Microbiol., 13(2), 45-49.
  •  
  • 36. Parsons, C.T., Couture, R.-M., Omoregie, E.O., Bardelli, F., Greneche, J.-M., Roman-Ross, G., and Charlet, L., 2013, The impact of oscillating redox conditions: arsenic immobilisation in contaminated calcareous floodplain soils. Environ. Pollut., 178, 254-263.
  •  
  • 37. Paul, S., Majumdar, S., and Giri, A.K., 2015, Genetic susceptibility to arsenic-induced skin lesions and health effects: a review. Gene. Environ., 37(1), 23.
  •  
  • 38. Ray, A.E., Connon, S.A., Neal, A.L., Fujita, Y., Cummings, D.E., Ingram, J.C., and Magnuson, T.S., 2018, Metal transformation by a novel pelosinus isolate from a subsurface environment. Front. Microbiol., 9.
  •  
  • 39. Rodriguez-Mora, M.J., Scranton, M.I., Taylor, G.T., and Chistoserdov, A.Y., 2015, The dynamics of the bacterial diversity in the redox transition and anoxic zones of the Cariaco Basin assessed by parallel tag sequencing. FEMS Microbiol. Ecol., 91(9), fiv088.
  •  
  • 40. Shade, A. and Handelsman, J., 2012, Beyond the Venn diagram: the hunt for a core microbiome. Environ. Microbiol., 14(1), 4-12.
  •  
  • 41. Smedley, P.L. and Kinniburgh, D.G., 2002, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem., 17(5), 517-568.
  •  
  • 42. Stookey, L. L., 1970, Ferrozine---a new spectrophotometric reagent for iron. Anal. Chem., 42(7), 779-781.
  •  
  • 43. Sultana, M., Vogler, S., Zargar, K., Schmidt, A.-C., Saltikov, C., Seifert, J., and Schlömann, M., 2012, New clusters of arsenite oxi-dase and unusual bacterial groups in enrichments from arsenic-contaminated soil. Arch. Microbiol., 194(7), 623-635.
  •  
  • 44. Teh, Y.A., Silver, W.L., and Conrad, M.E., 2005, Oxygen effects on methane production and oxidation in humid tropical forest soils. Global Change Biol., 11(8), 1283-1297.
  •  
  • 45. Torsvik, V. and ¨ªvreås, L., 2002, Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol., 5(3), 240-245.
  •  
  • 46. Waldrop, M.P. and Firestone, M.K., 2006, Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils. Microb. Ecol., 52(3), 470-479.
  •  
  • 47. Wang, N., Xue, X.-M., Juhasz, A.L., Chang, Z.-Z., and Li, H.-B., 2017, Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Environ. Pollut., 220, 514-522.
  •  
  • 48. Wang, X.-J., Yang, J., Chen, X.-P., Sun, G.-X., and Zhu, Y.-G., 2009, Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China. J. Soils Sed., 9(6), 568-577.
  •  
  • 49. Wang, Y., Liu, X.-h., Si, Y.-b., and Wang, R.-f., 2016, Release and transformation of arsenic from As-bearing iron minerals by Fe-reducing bacteria. Chem. Eng. J., 295, 29-38.
  •  
  • 50. Wenzel, W.W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., and Adriano, D.C., 2001, Arsenic fractionation in soils us-ing an improved sequential extraction procedure. Anal. Chim. Acta, 436(2), 309-323.
  •  
  • 51. Winkel, L., Berg, M., Amini, M., Hug, S.J., and Johnson, C.A., 2008, Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nature Geoscience, 1(8), 536-542.
  •  
  • 52. Xie, Z., Wang, J., Wei, X., Li, F., Chen, M., Wang, J., and Gao, B., 2018, Interactions between arsenic adsorption/desorption and indigenous bacterial activity in shallow high arsenic aquifer sediments from the Jianghan Plain, Central China. Sci. Total Environ., 644, 382-388.
  •  
  • 53. Yang, Y.-P., Zhang, H.-M., Yuan, H.-Y., Duan, G.-L., Jin, D.-C., Zhao, F.-J., and Zhu, Y.-G., 2018, Microbe mediated arsenic re-lease from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. En-viron. Pollut., 236, 598-608.
  •  
  • 54. Zhao, R., Hannisdal, B., Mogollon, J.M., and J©ªrgensen, S.L., 2019, Nitrifier abundance and diversity peak at deep redox transition zones. Scientific Reports, 9(1), 8633.
  •  

This Article

  • 2020; 25(1): 25-36

    Published on Mar 31, 2020

  • 10.7857/JSGE.2020.25.1.025
  • Received on Dec 23, 2019
  • Revised on Dec 26, 2019
  • Accepted on Feb 24, 2020

Correspondence to

  • Kyoungphile Nam
  • Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea

  • E-mail: kpnam@snu.ac.kr