• A Feasibility Assessment of CMDS (Coal Mine Drainage Sludge) in the Stabilization of Mercury Contaminated Soil in Mine Area
  • Il-Ha Koh1·Yo Seb Kwon1,2·Deok Hyun Moon3·Ju In Ko4·Won Hyun Ji4*

  • 1National Environment Lab. (NeLab), Seoul 02841, Korea
    2Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 05006, Korea
    3Department of Environmental Engineering, Chosun University, Gwangju 61452, Korea
    4Institute of Mine Reclamation Technology, Mine Reclamation Corporation, Gangwon-Do 26464, Korea

  • 광산지역 수은 오염토양 안정화를 위한 석탄광산배수슬러지의 적용성 평가
  • 고일하1·권요셉1,2·문덕현3·고주인4·지원현4*

  • 1환경기술정책연구원
    2세종대학교 에너지자원공학과
    3조선대학교 환경공학과
    4한국광해관리공단 기술연구소

References
  • 1. Boszke, L., Kowalski, A., Astel, A., Barański, A., Gworek, B., and Siepak, J., 2008, Mercury mobility and bioavailability in soil form contaminated area, Environ. Geol., 55(5), 1075-1087.
  •  
  • 2. Brady, N.C. and Weil, R.R., 2014, Elements of the Nature and Properties of Soils, Pearson Education Limited.
  •  
  • 3. Charlesworth, S., De Miguel, E., and Ordóñez, A., 2011, A review of the distribution of particulate trace elements in urban terrestrial environments and its application to consideration of risk, Environ. Geochem. Hlth., 33(2), 103-123.
  •  
  • 4. Fernández-Martínez, R., Larios, R., Gómez-Pinilla, I., Gómez-Mancebo, B., López-Andrés, S., Loredo, J., Ordóñez, A., and Rucan-dio, I., 2015, Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines, Geoderma, 253-254, 30-38.
  •  
  • 5. Gwak, B.H. and Yoon, K.E., 2011, Plant Physiology, Hyangmunsa.
  •  
  • 6. Jung, M.C., Kim, N.K,, and Kim, H.K., 2009, Evalution of environmental contamination and chemical speciation of mercury in tailings and soils from abandoned metal mines in Korea, J. Korean Society for Geosystem, 46(2), 228-238.
  •  
  • 7. Kim, M.S., Min, H.G., Lee, B.J., Chang, S.I., Kim, J.G., Koo, N.I., Park, J.S., and Bak, G.I., 2014, The applicability of the acid mine drainage sludge in the heavy metal stabilization in Soils, Korean J Environ Agric., 33(2), 78-85.
  •  
  • 8. Kim, P.R., Kim, D.Y., and Han, Y.J., 2019, A review of the long-term trend and spatial distribution of soil mercury concentration in south Korea, J. Korean Soc. Environ. Eng., 41(6), 346-355.
  •  
  • 9. Kim, S.C., Hong, Y.K., Oh, S.J., Oh, S.M., Lee, S.P., Kim, D.H., and Yang, J.E., 2017, Effect of chemical amendments on remedia-tion of potentially toxic trace elements (PTEs) and soil quality improvement in paddy fields, Environ. Geochem. Hlth., 39, 345-352.
  •  
  • 10. KME (Korea Ministry of Environment), 2013, Korea Standard Methods for Soil Analysis.
  •  
  • 11. KMFDS (Korea Mistry of Food and Drug Safety), 2015, Korean Food Standard Codex.
  •  
  • 12. Koh, I.H., 2015, Mine reclamation policies for reduction of water pollution in Japan, J. Mine Reclamation Technology and Policy, 9(1), 83-95.
  •  
  • 13. Koh, I.H., Kwon, Y.S., Moon, D.H., and Ji, W.H., 2019, A feasibility assessment for the stabilization of mercury contaminated soil using CMDS (coal mine drainage sludge), Proceedings of Asian Conference on Civil, Material and Environmental Sciences, Hokkai-do, Japan, p.399-400.
  •  
  • 14. Ko, M.S., Kim, J.Y., Park, H.S., and Kim, K.W., 2015, Field assesment of arsenic immobilization in soil amended with iron rich acid mine drainage sludge, J. Clean. Prod., 108, 1073-1080.
  •  
  • 15. KS E 1003:2014, Mine reclamation – Mine area – Selection of stabilization agent and mixing ratio for contaminated soil – Shake-flask batch test method
  •  
  • 16. KS I ISO 19730:2009, Soil quality – extraction of trace elements from soil using ammonium nitrate solution.
  •  
  • 17. Kwon, H.H. and Nam, G.S., 2017, Mine Reclamation, DongHwa Technology Publishing Co.
  •  
  • 18. Kumpiene, J., Lagerkvist, A., and Maurice, C., 2008, Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a riew, Waste Manage., 28(1), 215-225.
  •  
  • 19. Lechler, P.J., Miller, J.R., Hsu, L.C., and Desilets, M.O., 1997, Mercury mobility at the Carson river superfund site, west-central Nevada, USA: interpretation of mercury speciation data in mill tailings, soils, and sediments, J. Geochem. Explor., 58(2-3), 259-267.
  •  
  • 20. Moon, D.H., Cheong, K.H., Koutsospyros, A., Chang, Y.Y., Hyun, S.H., Ok, Y.S., and Park, J.H., 2016, Assessment of waste oys-ter shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu- contaminated soil, Environ. Sci. Pollut. R., 23(3), 2362-2370.
  •  
  • 21. NIAST(National Institute of Agricultural Science and Technology), 2010, Chemical methods for soil analysis.
  •  
  • 22. Park, J.D. and Zheng, W., 2012, Human exposure and health effects of inorganic and elemental mercury, J. Prev Med Public Health, 45(6), 344-352.
  •  
  • 23. Piao, H. and Bishop, P.L., 2006, Stabilization of mercury-containing wastes using sulfide, Environ. Pollut., 139(3), 498-506.
  •  
  • 24. Saniewska, D. and Beldowska, M., 2017, Mercury fractionation in soil and sediment samples using thermo-desorption method, Ta-lanta, 168, 152-161.
  •  
  • 25. Xu, J., Bravo, A.G., Lagerkvist, A., Bertilsson, S., Sjöblom, R., and Kumpiene, J., 2015, Source and remediation techniques for mercury contaminated soil, Environ. Int., 74, 42-53.
  •  

This Article

  • 2020; 25(1): 53-61

    Published on Mar 31, 2020

  • 10.7857/JSGE.2020.25.1.053
  • Received on Dec 17, 2019
  • Revised on Feb 6, 2020
  • Accepted on Mar 17, 2020

Correspondence to

  • Won Hyun Ji
  • Institute of Mine Reclamation Technology, Mine Reclamation Corporation, Gangwon-Do 26464, Korea

  • E-mail: greenidea@mireco.or.kr