• Effect of Iron Activators on the Persulfate Oxidation of Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Soils
  • Jiyeon Choi·Jungdo Park·Won Sik Shin*

  • School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Korea

  • 다환방향족 탄화수소(PAHs) 오염토양의 과황산 산화 시 철 활성화제의 영향
  • 최지연·박정도·신원식*

  • 경북대학교 건설환경에너지공학부

References
  • 1. Akbari, S., Ghanbari, F., and Moradi, M., 2016, Bisphenol A degradation in aqueous solutions by electrogenerated ferrous ion acti-vated ozone, hydrogen peroxide and persulfate: Applying low current density for oxidation mechanism, Chem. Eng. J., 294, 298-307.
  •  
  • 2. Brinch, U.C., Ekelund, F., and Jacobsen, C.S., 2002, Method for spiking soil samples with organic compounds (PAHs). Appl. Evi-ronm. Mcrobiol., 68(4), 1808-1816.
  •  
  • 3. Burgress, A.E. and Davidson, J.C., 2012, A kinetic-equilibrium study of a triiodide concentration maximum formed by the persul-fate-iodide reaction, J. Chem. Educ., 89(6), 814-816.
  •  
  • 4. Chen, C.-F., Binh, N.T., Chen, C.-W., and Dong, C.-D., 2015, Removal of polycyclic aromatic hydrocarbons from sediments using sodium persulfate activated by temperature and nanoscale zero-valent iron, J. Air Waste Manag., 65(4), 375-383.
  •  
  • 5. Chen, F., Tan, M., Ma. J., Li, G., and Qu, J., 2016, Restoration of manufactured gas plant site soil through combined ultra-sound-assisted soil washing and bioaugmentation, Chemosphere, 146, 289-299.
  •  
  • 6. Chen, H., Zhang, Z., Feng, M., Liu, W., Wang, W., Yang, Q., and Hu, Y., 2017, Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite), Chem. Eng. J., 313, 498-507.
  •  
  • 7. Cornellison, G., Hassell, K.A., van Noorst, P.C. M., Kraaij, R., van Erkeren, P.J., Dijkema, C., Dejager, P.A., and Govers, H.A.J., 2000, Slow desorption of PCBs and chlorobenzenes from soils and sediments: Relations with sorbent and sorbate characteristics, Environ. Pollut., 108(1), 69-80.
  •  
  • 8. Cornellison, G., Rigterink, H., Vrind, B.A., Tenhulscher, D.Th.E. M., Ferdinary, M.M.A., and Vannoorst, P.C.M., 1997, Two-stage desorption kinetics and in situ partitioning of hexachlorobenzene and dichlorobenzenes in a contaminant sediment, Chemosphere, 35(10), 2405-2416.
  •  
  • 9. Dong, H., He, Q., Zeng, G., Tang, L., Zhang, L., Xie, Y., Zeng, Y., and Zhao, F., 2017, Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA, Chem. Eng. J., 316, 410-418.
  •  
  • 10. Fan, J., Gu, L., Wu, D., and Liu, Z., 2018, Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: Surface reaction mechanism and sulfur-mediated cycling of iron species, Chem. Eng. J., 333, 657-664.
  •  
  • 11. Han, D., Wan, J., Ma, Y., Wang, Y., Huang, M., Chen, Y., Li, D., Guan, Z., and Li, Y., 2014, Enhanced decolorization of orange G in a Fe(II)-EDDS activated persulfate process by accelerating the regeneration of ferrous iron with hydroxylamine, Chem. Eng. J., 256, 316-323.
  •  
  • 12. Idowu, O., Semple, K.T., Ramadass, K., O¡¯Connor, W., Hansbro, P., and Thanvamani, P., 2020, Analysis of polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives in soils of an industrial heritage city of Australia, Sci. Total Environ., 699, 134303.
  •  
  • 13. Kim, C., Ahn, J.-Y., Kim, T.Y., Shin, W.S., and Hwang, I., 2018, Activation of persulfate by nanosized zero-valent iron(NZVI): Mechanisms and transformation products of NZVI, Environ. Sci. Technol., 52(6), 3625-3633.
  •  
  • 14. Kusmierek, K., Swiatkowski, A., and Dabek, L., 2015, Oxidative degradation of 2-chlorophenol by persulfate, J. Ecol. Eng., 16, 115-123.
  •  
  • 15. Lei, Y., Zhang, H., Wang, J., and Ai, J., 2015, Rapid and continuous oxidation of organic contaminants with ascorbic acid and a mod-ified ferric/persulfate system, Chem. Eng. J., 270, 73-79.
  •  
  • 16. Li, H., Wan, J., Ma, Y., Huang, M., Wang, Y., and Chen, Y., 2014, New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions, Chem. Eng. J., 250, 137-147.
  •  
  • 17. Liang, C., Bruell, C.J., Marley, M.C., and Sperry, K.L., 2004, Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple, Chemosphere, 55(9), 1213-1223.
  •  
  • 18. Ministry of Environment, 2009, A basic plant for soil conservation, Sejong, Korea.
  •  
  • 19. Ministry of Environment, 2018, Soil environment conservation act, Sejong, Korea
  •  
  • 20. Neta, P. and Huie, R.E., 1998, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17, 1027-1284.
  •  
  • 21. Oh, S., Wang, Q., Shin, W.S., and Song, D.-I., 2013, Sorption and desorption kinetics of PAHs in coastal sediment, Korean J. Chem. Eng., 30, 145-153.
  •  
  • 22. Rastogi, A., Al-Abed, S.R., and Dionysiou, D.D., 2009, Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols, Water Res., 43(3), 684-694.
  •  
  • 23. Stout, S.A. and Brey, A.P., 2019, Appraisal of coal- and coke-derived wastes in soils near a former manufactured gas plant, Jackson-ville, Florida, Int. J. Coal Geol., 213, 103265.
  •  
  • 24. Sun, H., Zhou, G., Liu, S., Ang, H.M., Tadé, M.O., and Wang, S., 2012, Nano-Fe0 encapsulated in microcarbon spheres: synthesis, characterization, and environmental applications, ACS Appl. Mater. Interf., 4(11), 6235-6241.
  •  
  • 25. Tan, C., Gao, N., Chu, W., Li, C., and Templeton, M.R., 2012, Degradation of diuron by persulfate activated with ferrous ion, Sep. Purif. Technol., 95, 44-48.
  •  
  • 26. USEPA, 2007, Method 3545A: Pressurized Fluid Extraction (PFE), Test Methods for the Evaluation of Solid Waste: Laboratory Manual Physical Chemical Methods. SW 846, Washington, DC, USA, Office of Solid Waste.
  •  
  • 27. USEPA, 2014, Method 8270D: Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, Test Methods for the Evaluation of Solid Waste: Laboratory Manual Physical Chemical Methods. SW 846, Washington, DC, USA, Office of Solid Waste.
  •  
  • 28. Venny, Gan, S., and Ng, H.K., 2012, Inorganic chelated modified-Fenton treatment of polycyclic aromatic hydrocar-bon(PAH)-contaminated soils. Chem. Eng. J., 180(1), 1-8
  •  
  • 29. White, P.A. and Claxton, L.D., 2004, Mutagens in contaminated soil: a review. Mutat. Res., 567(2-3), 227-345.
  •  
  • 30. Wu, X., Gu, X., Lu, S., Qiu, Z., Sui, Q., Zhang, X., Miao, Z., and Xu, M., 2015, Strong enhancement of trichloroethylene degrada-tion in ferrous ion activated persulfate system by promoting ferric and ferrous ion cycles with hydroxylamine, Sep. Purif. Technol., 147, 186-193.
  •  
  • 31. Zou, J., Ma, J., Chen, L., Li, X., Guan, Y., Xie, P., and Pan, C., 2013, Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine, Environ. Sci. Technol., 47(20), 11685-11692.
  •  

This Article

  • 2020; 25(1): 62-73

    Published on Mar 31, 2020

  • 10.7857/JSGE.2020.25.1.062
  • Received on Jan 17, 2020
  • Revised on Feb 12, 2020
  • Accepted on Mar 17, 2020

Correspondence to

  • Park·Won Sik Shin
  • School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Korea

  • E-mail: wshin@knu.ac.kr