• Effect of Hydrochloric Acid Concentration on Removal Efficiency and Chemical Forms of Heavy Metals During Dredged Sediment Acid Washing
  • Kibeum Kim1·Yongju Choi1,2*

  • 1Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea
    2Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea

  • 준설토 산세척 시 염산 농도가 중금속의 정화효율 및 존재형태에 미치는 영향
  • 김기범1·최용주1,2*

  • 1서울대학교 건설환경공학부
    2서울대학교 공학연구원

References
  • 1. An, Y.-J. and Kampbell, D.H., 2003, Total, dissolved, and bioavailable metals at Lake Texoma marinas, Environ. Pollut., 122(2), 253-259.
  •  
  • 2. Batjargal, T., Otgonjargal, E., Baek, K., and Yang, J.-S., 2010, Assessment of metals contamination of soils in Ulaanbaatar, Mongolia, J. Hazard. Mater., 184(1-3), 872-876.
  •  
  • 3. Dermont, G., Bergeron, M., Mercier, G., and Richer-Laflèche, M., 2008, Soil washing for metal removal: a review of physi-cal/chemical technologies and field applications, J. Hazard. Mater., 152(1), 1-31.
  •  
  • 4. Lin, Y.T., Chien, Y.C., and Liang, C., 2012, A laboratory treatability study for pilot-scale soil washing of Cr, Cu, Ni, and Zn contam-inated soils. Environ. Prog. Sustaine., 31(3), 351-360.
  •  
  • 5. Ghallab, A. and Usman, A.R.A., 2007, Effect of sodium chloride-induced salinity on phyto-availability and speciation of Cd in soil solution, Water. Air. Soil. Poll., 185(1-4), 43-51.
  •  
  • 6. Gusiatin, Z.M. and Klimiuk, E., 2012, Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin, Chemosphere., 86(4), 383-391.
  •  
  • 7. Kim, K.J., Kim, D.H., Yoo, J.C. and Baek, K., 2011. Electrokinetic extraction of heavy metals from dredged marine sediment, Sep. Purif. Technol., 79(2), 164-169.
  •  
  • 8. Kim, K., Yang, W., Nam, K., Choe, J.K., Cheong, J., and Choi, Y., 2018, Prediction of long-term heavy metal leaching from dredged marine sediment applied inland as a construction material, Environ. Sci. Pollut. Res., 25(27), 27352-27361.
  •  
  • 9. Ko, I., Chang, Y.-Y., Lee, C.-H., and Kim, K.-W., 2005, Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction, J. Hazard. Mater., 127(1-3), 1-13.
  •  
  • 10. Ko, I., Lee, C.H., Lee, K.P., Lee, S.W., and Kim, K.W., 2006, Remediation of soil contaminated with arsenic, zinc, and nickel by pi-lot-scale soil washing, Environ. Prog., 25(1), 39-48.
  •  
  • 11. Kubová, J., Matúš, P., Bujdoš, M., Hagarová, I., and Medved¡¯ J., 2008, Utilization of optimized BCR three-step sequential and di-lute HCl single extraction procedures for soil–plant metal transfer predictions in contaminated lands, Talanta., 75(4), 1110-1122.
  •  
  • 12. Kuo, S., Lai, M.S., and Lin, C.W., 2006, Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils, Environ. Pollut., 144(3), 918-925.
  •  
  • 13. Lee, M., Paik, I.S., Do, W., Kim, I., Lee, Y. and Lee, S., 2007, Soil washing of As-contaminated stream sediments in the vicinity of an abandoned mine in Korea, Environ. Geochem. Health., 29(4), 319-329.
  •  
  • 14. Leleyter, L., Rousseau, C., Biree, L., and Baraud, F., 2012, Comparison of EDTA, HCl and sequential extraction procedures, for se-lected metals (Cu, Mn, Pb, Zn), in soils, riverine and marine sediments, J. Geochem. Explor., 116, 116-117, 51-59.
  •  
  • 15. Moutsatsou, A., Gregou, M., Matsas, D., and Protonotarios, V., 2006, Washing as a remediation technology applicable in soils heav-ily polluted by mining–metallurgical activities, Chemosphere., 63(10), 1632-1640.
  •  
  • 16. Peng, J.-f., Song, Y.-h., Yuan, P., Cui, X.-y., and Qiu, G.-l., 2009, The remediation of heavy metals contaminated sediment, J. Haz-ard. Mater., 161(2-3), 633-640.
  •  
  • 17. Santos, I.R., Silva-Filho, E.V., Schaefer, C.E., Albuquerque-Filho, M.R., and Campos, L.S., 2005, Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island, Mar. Pollut. Bull., 50(2), 185-194.
  •  
  • 18. Snape, I., Scouller, R.C., Stark, S.C., Stark, J., Riddle, M.J., and Gore, D.B., 2004, Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments, Chemosphere., 57(6), 491-504.
  •  
  • 19. Sundaray, S.K., Nayak, B.B., Lin, S., and Bhatta, D., 2011, Geochemical speciation and risk assessment of heavy metals in the river estuarine sedimentsa case study: Mahanadi basin, India, J. Hazard. Mater., 186(2-3), 1837-1846.
  •  
  • 20. Sutherland, R.A., 2002, Comparison between non-residual Al, Co, Cu, Fe, Mn, Ni, Pb and Zn released by a three-step sequential extraction procedure and a dilute hydrochloric acid leach for soil and road deposited sediment, Appl. Geochem., 17(4), 353-365.
  •  
  • 21. Tessier, A., Campbell, P.G.C., and Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51(7), 844-851.
  •  
  • 22. USEPA (U.S. Environmental Protection Agency), 1996, SW-846 Test Method 3052: Microwave Assisted Acid Digestion of Sili-ceous and Organically Based Matrices. Washington, DC.
  •  
  • 23. Wuana, R.A., Okieimen, F.E., and Imborvungu, J.A., 2010, Removal of heavy metals from a contaminated soil using organic chelat-ing acids, Int. J. Environ. Sci. Technol., 7(3), 485-496.
  •  
  • 24. Yao, Z., Li, J., Xie, H., and Yu, C., 2012, Review on remediation technologies of soil contaminated by heavy metals, Procedia Envi-ron. Sci., 16, 722-729.
  •  
  • 25. Yoo, J.-C., Lee, C.-D., Yang, J.-S., and Baek, K., 2013, Extraction characteristics of heavy metals from marine sediments, Chem. Eng. J., 228, 688-699.
  •  
  • 26. Yoo, J., Jeon, P., Tsang, D.C., Kwon, E.E., and Baek, K., 2018, Ferric-enhanced chemical remediation of dredged marine sediment contaminated by metals and petroleum hydrocarbons, Environ. Pollut., 243, 87-93.
  •  
  • 27. Zhao, S., Feng, C., Yang, Y., Niu, J., and Shen, Z., 2012, Risk assessment of sedimentary metals in the Yangtze Estuary: new evi-dence of the relationships between two typical index methods, J. Hazard. Mater., 241-242, 164-172.
  •  

This Article

  • 2020; 25(1): 74-83

    Published on Mar 31, 2020

  • 10.7857/JSGE.2020.25.1.074
  • Received on Jan 30, 2020
  • Revised on Jan 31, 2020
  • Accepted on Mar 17, 2020

Correspondence to

  • Yongju Choi
  • 1Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea
    2Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea

  • E-mail: ychoi81@snu.ac.kr