• Preparation of Iron Nanoparticles Impregnated Hydrochar from Lignocellulosic Waste using One-pot Synthetic Method and Its Characteristics
  • Yu-Lim Choi1·Dong-Su Kim1·Ganesh Kumar Reddy Angaru1·Hye-Young Ahn1·Kwang-Jin Park2·Jae-Kyu Yang1·Yoon-Young Chang1*

  • 1Department of Environmental Engineering, Kwangwoon University
    2Daeil Engineering & Consulting CO., LTD

  • One-pot 합성 방법을 이용한 나노 철입자가 담지된 폐목재 기반 하이드로차의 제조 및 특성 평가
  • 최유림1·김동수1·Ganesh Kumar Reddy Angaru1·안혜영1·박광진2·양재규1·장윤영1*

  • 1광운대학교 환경공학과
    2Daeil Engineering & Consulting Co., LTD

References
  • 1. Arancibia-Miranda, N., Baltazar, S.E., Garcia, A., Romero, A.H., Rubio, M.A., and Altbir, D., 2014, Lead removal by nano-scale zero valent iron: Surface analysis and pH effect, Materials Research Bulletin, 59, 341-348.
  •  
  • 2. Bakshi, S., Banik, C., Rathke, S.J., and Laird, D.A., 2018, Arsenic sorption on zero-valent ironbiochar complexes, Water Res., 137, 153-163.
  •  
  • 3. Chandraiah, M.R., 2016, Facile synthesis of zero valent iron magnetic biochar composites for Pb(II) removal from the aqueous me-dium, Alexandria Engineering Journal, 55(1), 619-625.
  •  
  • 4. Choi, Y.L., Kim, D.S., Park, K.W., Yang, J.K., and Chang, Y.Y., 2019, Preparation of Hydrochar from Roadsite Tree and Sewage Sludge and Effects of Reaction Conditions, Proceedings of Biochar World Congress 2019, International Biochar Initiative, Seoul, South Korea, 158.
  •  
  • 5. Cui, J., Jin, Q., Li, Y., and Li, F., 2019, Oxidation and removal of As(III) from soil using novel magnetic nanocomposite derived from biomass waste, Environ. Sci.: Nano, 6(2), 478-488.
  •  
  • 6. Fang, J., Zhan, L., OK, Y.S., and Gao, B., 2018, Minireview of potential applications of hydrochar derived from hydrothermal car-bonization of biomass, Journal of Industrial and Engineering Chemistry, 57, 15-21
  •  
  • 7. Gai, C., Zhang, F, Lang, Q., Liu, T., and Peng, N., and Liu, Z., 2017, Facile one-pot synthesis of iron nanoparticles immobilized into theporous hydrochar for catalytic decomposition of phenol, Applied Catalysis B: Environmental, 204, 566-576
  •  
  • 8. Hoekamn, S.K., Broch, A., Robbins, C., Zielinska, B., and Felix, L., 2013, Hydrothermal carbonization(HTC) of selected woody and herbaceous biomass feedstocks, Biomass Conversion and Biorefinery, 3(2), 113-126.
  •  
  • 9. Hu, X., Ding, Z., Zimmerman, A.R., Wang, S., and Gao, B., 2015, Batch and column sorption of arsenic onto iron-impregnated bio-char synthesized through hydrolysis, Water Research, 68, 206-216.
  •  
  • 10. Gamgoum, R., Dutta, A., Santos, R.M., and Chiang, Y.M., 2016, Hydrothermal Conversion of Neutral Sulfite Semi-Chemical Red Liquor into Hydrochar, Energies, 9(6), 435.
  •  
  • 11. Kambo, H.S. and Dutta, A., 2015, A comparative review of biochar and hydrochar in terms of production, physico-chemical proper-ties and applications, Renewable and Sustainable Energy Reviews, 45, 359-378.
  •  
  • 12. KECO, 2017, Statistics of nationwide waste emission and disposal 2016, Korea Environment Coporation.
  •  
  • 13. KZWMN, 2010, A study on estimiation of wood circular resources emissions, Korea Zero Waste Movment Network.
  •  
  • 14. Lee, S.J., 2019, A Study on Hydrochar Reforming by Recirculation of Bio-liquid through Hydrothermal Carbonization of Wood Waste, Final thesis, University of Seoul.
  •  
  • 15. Li, H., Dong, X., Silva, E.B., Oliveria, L.M., Chen, Y., and Ma, L.Q., 2017, Mechanisms of metal sorption by biochars: Biochar characteristics and modifications, Chemosphere, 178, 466-478.
  •  
  • 16. Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.M., Fühner, C., Bens, O., Kern, J., and Em-merich, K. H., 2011, Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applica-tions of wet and dry pyrolysis, Biofuels, 2(1), 71-106.
  •  
  • 17. Lyu, H., Tang, J., Huang, Y., Gai, L., Zeng, E.Y., Liber, K., and Gong, Y., 2017, Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem. Eng. J., 322, 516-524.
  •  
  • 18. Mandal, S., Pu, S., Wang, X., Ma, H., and Bai, Y., 2019, Hierarchical porous structured polysulfide supported nZVI/biochar and efficient immobilization of selenium in the soil. Science of the Total Envrionment, DOI: 10.1016/j.scitotenv.2019.134831
  •  
  • 19. Marcus, Y., 1999, On transport properties of hot liquid and supercritical water and their relationship to the hydrogen bonding, Fluid Phase Equilibria, 164(1), 131-142.
  •  
  • 20. Neeli, S.T. and Ramsurn, H., 2018, Synthesis and formation mechanism of iron nanoparticles in graphitized carbon matrices using biochar from biomass model compounds as a support, Carbon, 134, 480-490.
  •  
  • 21. Nguyen, T.H., Pham, T.H., Thi, H.T.N., Nguyen, T.N., Nguyen, M.V., Dinh, T.T., Nguyen, M.P., Do, T.Q., Phuong, T., Hoang, T.T., Huang, T.T.M., and Thi, V.H.T., 2019, Synthesis of Iron-Modified Biochar Derived from Rice Straw and Its Application to Arsenic Removal, Journal of Chemistry, 2019, 1-8.
  •  
  • 22. Pérez-Mayoral, E., Calvino-Casilda, V., and Soriano, E., 2016, Metal-supported carbon-based materials: opportunities and challenges in the synthesis of valuable products, Catal. Sci. Technol., 6(5), 1265-1291.
  •  
  • 23. Qiao, J.T., Liu, T.X., Wang, X.Q., Li, F.B., Lv, Y.H., Cui, J.H., Zeng, X.D., Yuan, Y.Z., and Liu, C.P., 2018, Simultaneous allevia-tion of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils, Chemosphere, 195, 260-271.
  •  
  • 24. Santhosh, C., Velmurugan, V., Jacon, G., Jeong, S.K., Grace, A.N., and Bhatnager, A., 2016, Role of nanomaterials in water treat-ment applications: A review, Chemical Engineering Journal, 306, 1116-1137.
  •  
  • 25. Siddiqui, M.T.H., Nizamudiin, S., Baloch, H.A., Mubarak, N.M., Dumbre, D.K., Asiri, A.M., Bhutto, A.W., Srinvasan M., and Griffin, G.J., 2018, Synthesis of magnetic carbon nanocomposites by hydrothermal carbonization and pyrolysis, Environmental Chemistry Letters, 16(3), 821-844.
  •  
  • 26. Sun, Y., Yu, I.K.M., Tsang, D.C.W., Cao, X., Lin, D., Wang, L., Graham, N.J.D., Alessi, D.S., Kmarek, M., Ok, Y.S., Feng, Y., and Li, X.D., 2019, Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and het-ero-chloride from hydraulic fracturing wastewater, Environment International, 124, 521-532.
  •  
  • 27. Wang, S., Gao, B., Zimmerman, A.R., Li, Y., Ma, L., Harris, W.G., and Migliaccio, K.W., 2015, Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite, Bioresource Technology, 175, 391-395.
  •  
  • 28. Wang, S., Guo, W., Gao, F., Wang, Y., and Gao, Y., 2018(a), Lead and uranium sorptive removal from aqueous solution using mag-netic and nonmagnetic fast pyrolysis rice husk biochars, RSC Adv., 8(24), 13205-13217.
  •  
  • 29. Wang, S., Xu, Y., Norbu, N., and Wang, Z., 2018(b), Remediation of biochar on heavy metal polluted soils, Earth and Environmental Science, 108(4), doi :10.1088/1755-1315/108/4/042113
  •  
  • 30. Wang, S.Y., Tang, Y.K., Chen, C., Wu, J.T., Huang, Z., Mo, Y.Y., Zhang, K.X., and Chen, J.B., 2015, Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead(II) removal, Bioresource Technology, 186, 360-364.
  •  
  • 31. Wu, J., Wang, T., Zhang, Y., and Pan, W.P., 2019, The distribution of Pb(II)/Cd(II) adsorption mechanisms on biochars from aque-ous solution: Considering the increased oxygen functional groups by HCl treatment, Bioresource Technology, 291, 121859.
  •  
  • 32. Yang, F., Zhang, S., Sun, Y., Cheng, K., Li, J., and Tsang, D.C.W., 2018, Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal, Bioresource Technology, 265, 490-497.
  •  
  • 33. Yuan C. and Lien, H.L., 2006, Removal of Arsenate from Aqueous Solution Using Nanoscale Iron Particles, Water Qual. Res. J., 41(2), 210-215.
  •  
  • 34. Zhou, Z., Liu, Y.G., Liu, S.B., Liu, H.Y., Zeng, G.M., Tan, X.F., Yang, C.P., Ding, Y., Yan, Z.l., and Cai, X.X.,, 2017, Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar, Chem. Eng. J., 314, 223-231.
  •  
  • 35. Zhu, H., Jia, Y., Wu, X., and Wang, H., 2009, Removal of arsenic from water by supported nano zero-valent iron on activated carbon, Journal of Hazardous Materials, 172(2-3), 1591-1596.
  •  
  • 36. Zhu, S., Ho, S.H., Huang, X., Wang, D., Yang, F., Wang, L., Wang, C., Cao, X., and Ma, F., 2017, Magnetic Nanoscale Zerovalent Iron Assisted Biochar: Interfacial Chemical Behaviors and Heavy Metals Remediation Performance, ACS Sustainable Chem. Eng., 5(11), 9673-9682.
  •  
  • 37. Zhu, X., Liu, Y., Qian, F., Zhou, C., Zhang, S., and Chen, J., 2015, Role of Hydrochar Properties on the Porosity of Hydro-char-based Porous Carbon for Their Sustainable Application, ACS sustain. Chem. Eng., 3(5), 833-840
  •  

This Article

  • 2020; 25(1): 95-105

    Published on Mar 31, 2020

  • 10.7857/JSGE.2020.25.1.095
  • Received on Mar 10, 2020
  • Revised on Mar 17, 2020
  • Accepted on Mar 26, 2020

Correspondence to

  • Yoon-Young Chang
  • Department of Environmental Engineering, Kwangwoon University

  • E-mail: yychang@kw.ac.kr