• Study on Stabilization of Arsenic in Soil through in situ Formation of Amorphous Fe Oxides and use of X-ray Absorption Spectroscopy
  • Jinhee Park1·Hyeonyong Chung1·Sang Hyun Kim1·Jinsung An2·Kyoungphile Nam1*

  • 1Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
    2Department of Biological & Environmental Engineering, Semyung University, 65 Semyung-ro, Jecheon-si, Chungcheongbuk-do 27136, Republic of Korea

  • 비결정질철산화물 원위치 형성을 통한 비소오염토양 안정화 및 X선 분광분석법의 활용에 대한 연구
  • 박진희1·정현용1·김상현1·안진성2·남경필1

  • 1서울대학교 건설환경공학부
    2세명대학교 바이오환경공학과

References
  • 1. An, J., Jeong, B., and Nam, K., 2019, Evaluation of the effectiveness of in situ stabilization in the field aged arsenic-contaminated soil: Chemical extractability and biological response, J. Hazard. Mater., 367, 137-143.
  •  
  • 2. An, J., Yang, K., Kang, W., Lee, J.S., and Nam, K., 2017, Risk Mitigation Measures in Arsenic-contaminated Soil at the Forest Area Near the Former Janghang Smelter Site: Applicability of Stabilization Technique and Follow-up Management Plan, J. Soil Groundw., 22(6), 1-11.
  •  
  • 3. Crawford, R.J., Harding, I.H., and Mainwaring, D.E., 1993, Adsorption and coprecipitation of single heavy metal ions onto the hy-drated oxides of iron and chromium, Langmuir, 9(11), 3050-3056.
  •  
  • 4. Dave, P.N. and Chopda, L.V., 2014, Application of iron oxide nanomaterials for the removal of heavy metals, J. Nanotechnol., 2014(1), 1-14.
  •  
  • 5. Francisco, P.C.M., Sato, T., Otake, T., Kasama, T., Suzuki, S., Shiwaku, H., and Yaita, T., 2018, Mechanisms of Se (IV) co-precipitation with ferrihydrite at acidic and alkaline conditions and its behavior during aging, Environ. Sci. Technol., 52(8), 4817-4826.
  •  
  • 6. Gault, A.G., Cooke, D.R., Townsend, A.T., Charnock, J.M., and Polya, D.A., 2005, Mechanisms of arsenic attenuation in acid mine drainage from Mount Bischoff, western Tasmania, Sci. Total Environ., 345(1-3), 219-228.
  •  
  • 7. Gee, G.W. and Bauder, J.W., 1986, Particle-size analysis, Methods of Soil Analysis: Part 1, Physical and Mineralogical Methods, Soil Science Society of America Inc., Madison, WI, USA, 383-411.
  •  
  • 8. Gimenez, J., Martinez, M., de Pablo, J., Rovira, M., and Duro, L., 2007, Arsenic sorption onto natural hematite, magnetite, and goe-thite, J. Hazard. Mater., 141(3), 575-580.
  •  
  • 9. Jeong, S., Moon, H.S., Yang, W., and Nam, K., 2016, Applicability of Enhanced-phytoremediation for Arsenic-contaminated Soil, J. Soil Groundw., 21(1), 40-48.
  •  
  • 10. Jeong, S., Yang, K., Jho, E.H., and Nam, K., 2017, Importance of chemical binding type between As and iron-oxide on bioaccessibil-ity in soil: Test with synthesized two line ferrihydrite, J. Hazard. Mater., 330, 157-164.
  •  
  • 11. Mello, J.W.V.d., Gasparon, M., and Silva, J., 2018, Effectiveness of arsenic co-precipitation with Fe-Al hydroxides for treatment of contaminated water, Rev. Bras. Cienc. Solo., 42.
  •  
  • 12. Mitsunobu, S., Muramatsu, C., Watanabe, K., and Sakata, M., 2013, Behavior of antimony (V) during the transformation of ferrihy-drite and its environmental implications, Environ. Sci. Technol., 47(17), 9660-9667.
  •  
  • 13. Ravel, B. and Newville, M., 2005, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat., 12(4), 537-541.
  •  
  • 14. Regenspurg, S., Brand, A., and Peiffer, S., 2004, Formation and stability of schwertmannite in acidic mining lakes, ‎Geochim. Cos-mochim. Acta, 68(6), 1185-1197.
  •  
  • 15. Ruby, M.V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D., Casteel, S., Berti, W., and Carpenter, M., 1999, Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment, Environ. Sci. Technol., 33(21), 3697-3705.
  •  
  • 16. Sumner, M.E. and Miller, W., 1996, Cation exchange capacity and exchange coefficients. Methods of Soil Analysis: Part 3, Chemical Methods, Soil Science Society of America Inc., Madison, WI, USA, 1201-1229.
  •  
  • 17. Tang, X.-Y., Zhu, Y.-G., Shan, X.-Q., McLaren, R., and Duan, J., 2007, The ageing effect on the bioaccessibility and fractionation of arsenic in soils from China, Chemosphere, 66(7), 1183-1190.
  •  
  • 18. Thomas, G.W., 1996, Soil pH and soil acidity, Methods of Soil Analysis: Part 3, Chemical Methods, Soil Science Society of America Inc., Madison, WI, USA, 475-490.
  •  
  • 19. USEPA, 1996, Method 3052-Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices.
  •  
  • 20. Voegelin, A. and Hug, S.J., 2003, Catalyzed oxidation of arsenic (III) by hydrogen peroxide on the surface of ferrihydrite: an in situ ATR-FTIR study, Environ. Sci. Technol., 37(5), 972-978.
  •  
  • 21. Walkley, A. and Black, I.A., 1934, An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method, Soil Sci., 37(1), 29-38.
  •  
  • 22. Wang, J.W., Bejan, D., and Bunce, N.J., 2003, Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjust-ment and coprecipitation with iron hydroxide, Environ. Sci. Technol., 37(19), 4500-4506.
  •  
  • 23. Wang, Y., Zeng, X., Lu, Y., Bai, L., Su, S., and Wu, C., 2017, Dynamic arsenic aging processes and their mechanisms in nine types of Chinese soils, Chemosphere, 187, 404-412.
  •  
  • 24. Wang, Y., Zeng, X., Lu, Y., Su, S., Bai, L., Li, L., and Wu, C., 2015, Effect of aging on the bioavailability and fractionation of arsenic in soils derived from five parent materials in a red soil region of Southern China, Environ. Pollut., 207, 79-87.
  •  
  • 25. Wenzel, W.W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., and Adriano, D.C., 2001, Arsenic fractionation in soils us-ing an improved sequential extraction procedure, Anal. Chim. Acta, 436(2), 309-323.
  •  
  • 26. Yang, K., Jeong, S., Jho, E.H., and Nam, K., 2016, Effect of biogeochemical interactions on bioaccessibility of arsenic in soils of a former smelter site in Republic of Korea, Environ. Geochem. Health, 38(6), 1347-1354.
  •  
  • 27. Yang, K., Kim, Y.-J., Im, J., and Nam, K., 2014, Determination of human health risk incorporated with arsenic bioaccessibility and remediation goals at the former Janghang smelter site, J. Soil Groundw., 19(4), 52-61.
  •  

This Article

  • 2020; 25(2): 9-15

    Published on Jun 30, 2020

  • 10.7857/JSGE.2020.25.2.009
  • Received on Apr 30, 2020
  • Revised on May 7, 2020
  • Accepted on Jun 5, 2020

Correspondence to

  • Kyoungphile Nam
  • Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

  • E-mail: kpnam@snu.ac.kr