• The Effect of Geological Media on the Denitrification of Nitrate in Subsurface Environments
  • Ji-Hun Jeon·Woo-Chun Lee·Sang-Woo Lee·Soon-Oh Kim*

  • Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)

  • 지중환경 내 지질 매체가 질산염의 탈질 반응에 미치는 영향에 대한 고찰
  • 전지훈·이우춘·이상우·김순오*

  • 경상대학교 지질과학과 및 기초과학연구소(RINS)

References
  • 1. Alefounder, P.R., Greenfield, A.J., McCarthy, J.E.G., and Ferguson, S.J., 1983, Selection and organization of denitrifying electron transfer pathways in paracoccus denitrificans, Biochim. Biophys. Acta., 724(1), 20-39.
  •  
  • 2. An, S.W., Murray, C., and Park, J.W., 2010, Effect of various hydraulic conductivities for natural denitrification, Proceeding of Ko-rean Geo-Environmental Society Fall Conference, Koean Geo-Environmental Society., Seoul, Koera, 583-587.
  •  
  • 3. Archna, A., Sharma, K.S., and Sobti, R.C., 2012, Nitrate removal from ground water: a review, E-J. Chem., 9(4), 1667-1675.
  •  
  • 4. Ashok, V. and Hait, S., 2015, Remediation of nitrate-contaminated water by solid-phase denitrification process-a review, Environ. Sci. Pollut. Res., 22(11), 8075-8093.
  •  
  • 5. Betlach, M.R. and Tiedje, J.M., 1981, Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification, Appl. Environ. Microbiol., 42(6), 1074-1084.
  •  
  • 6. Bellini, G., Sumner, M.E., Radcliffe, D.E., and Qafoku, N.P., 1996, Anion transport through columns of highly weathered acid soil: Adsorption and retardation, Soil Sci. Soc. Am. J., 60(1), 132-137.
  •  
  • 7. Boisson, A., Anna, P.d., Bour, O., Borgne, T.L., Labasque, T., and Aquilina, L., 2013, Reaction chain modeling of denitrification reactions during a push-pull test, J. Contam. Hydrol., 148, 1-11.
  •  
  • 8. Bond, D.L. and Fendorf, S., 2003, Kinetics and structural constraints of chromate reduction by green rusts, Environ. Sci. Technol., 37(12), 2750-2757.
  •  
  • 9. Bosch, J., Lee, K.Y., Jordan, G., Kim, K.W., and Meckenstock, R.U., 2012, Anaerobic, nitrate-dependent oxidation of pyrite nanopar-ticles by thiobacillus denitrificans, Environ. Sci. Technol., 46(4), 2095-2101.
  •  
  • 10. Cheong, B.K., Chae, G.T., Koh, D.C., Ko, K.S., and Koo, M.H., 2008, A study of improvement for the prediction of groundwater pollution in rural area: application in keumsan, Korean J. Soil. Groundw. Environ., 13(4), 40-53.
  •  
  • 11. Christiansen, B.C., Balic-Zunic, T., Dideriksen, K., and Stipp, S.L.S., 2009, Identification of green rust in groundwater, Environ. Sci. Technol., 43(10), 3436-3441.
  •  
  • 12. Davidson, E.A., Chorover, J., and Dail, D.B., 2003, A mechanism of abiotic immobilization of nitrate in forest ecosystems: the fer-rous wheel hypothesis, Glob. Change biol., 9(2), 228-236.
  •  
  • 13. Devito, K.J., Fitzgerald, D., Hill, A.R., and Aravena, R., 2000, Nitrate dynamics in relation to lithology and hydrologic flow path in a river riparian zone, J. Environ. Qual., 29(4), 1075-1084.
  •  
  • 14. Dhakal, P., Matocha, C.J., Huggins, F.E., and Vandiviere, M.M., 2013, Nitrite reactivity with magnetite, Environ. Sci. Technol., 47(12), 6206-6213.
  •  
  • 15. Doane, T.A., 2017, The Abiotic Nitrogen Cycle. ACS Earth Space Chem., 1(7), 411-421.
  •  
  • 16. Ernstsen, V., 1996, Reduction of nitrate by Fe2+ in clay minerals, Clays Clay Miner., 44(5), 599-608.
  •  
  • 17. Ersoy, A.F. and Gultekin, F., 2013, DRASTIC-based methodology for assessing groundwater vulnerability in the Gumushacikoy and Merzifon basin, Earth Science Research Journal, 17(1), 33-40.
  •  
  • 18. Hansen, H.C.B., 1989, Composition, stabilization, and light absorption of Fe(II)Fe(III) hydroxy-carbonate (¡°green rust¡±), Clay Miner., 24(4), 663-669.
  •  
  • 19. Hansen, H.C.B., Guldberg, S., Erbs, M., and Koch, C.B., 2001, Kinetics of nitrate reduction by green rusts-Effects of interlayer anion and Fe(II):Fe(III) ratio, Appl. Clay Sci., 18(1-2), 81-91.
  •  
  • 20. Hansen, H.C.B., Koch, C.B., Nancke-Krogh, H., Borggaard, O.K., and Srensen, J., 1996, Abiotic nitrate reduction to ammonium: Key role of green rust, Environ. Sci. Technol., 30(6), 2053-2056.
  •  
  • 21. IGRAC., 2019, Global groundwater information system. Retrieved from International Groundwater Resources Assessment Centre, https://apps.geodan.nl/igrac/ggis-viewer /viewer/go/public/default ¡æ Groundwater quality ¡æ Presence of zones with high nitrate.
  •  
  • 22. Jeon, S.R., Park, S.J., Kim, H.S., Jung, S.K., Lee, Y.U., and Chung, J.I., 2011, Hydrogeochemical chracteristics and estimation of nitrate contamination sources of groundwater in the sunchang area, J. Geol. Soc. Korea, 47(2), 185-197.
  •  
  • 23. Jessen, S., Postma, D., Thorling, L., Müller, S., Leskelä, J., and Engesgaard, P., 2017, Decadal variations in groundwater quality: A legacy from nitrate leaching and denitrification by pyrite in a sandy aquifer, Water Resour. Res., 53(1), 184-198.
  •  
  • 24. Kappler, A., Schink, B., and Newman, D.K., 2005, Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1, Geobiology, 3(4), 235-245.
  •  
  • 25. Kim, H.J., Kim, N.H., Lee, J.H., and Jang, S., 2009, Characteristics of groundwater contamination caused by seawater intrusion and agricultural activity in sachen and hadong area, republic of Korea, Econ. Environ. Geol., 42(6), 575-589.
  •  
  • 26. Kim, H.K., Park, S.H., Kim, M.S., Kim, H.J., Lee, M.K., Lee, G.M., Kim, S.H., Yang, J,H., and Kim, T.S., 2014, Contamination characteristics of agricultural groundwater around livestock burial areas in Korea, J. Eng. Geol., 24(2), 237-246.
  •  
  • 27. Kim, H.K., Kim, K.H., Yun, S.T., Oh, J.S., Kim, H.R., Park, S.H., Kim, M.S., and Kim, T.S., 2019, Probabilistic assessment of po-tential leachate leakage from livestock mortality burial pits: a supervised classification approach using a gaussian mixture model (GMM) fitted to a groundwater quality monitoring dataset, Process. Saf. Environ. Prot., 129, 326-338.
  •  
  • 28. Koh, E.H., Lee, E.H., and Lee, K.K., 2016, Impact of leaky wells on nitrate cross-contamination in a layered aquifer system: Method-ology for and demonstration of quantitative assessment and prediction, J. Hydrol., 541, 1133-1144.
  •  
  • 29. Korom, S.F., 1992, Natural denitrification in the saturated zone: a review, Water Resour. Res., 28(6), 1657-1668.
  •  
  • 30. Krause, B. and Nealson, K.H., 1997, Physiology and enzymology involved in denitrification by shewanella putrefaciens, Appl. Envi-ron. Microbiol., 63(7), 2613-2618.
  •  
  • 31. Lapworth, D.J., Krishan, G., MacDonald, A.M., and Rao, M.S., 2017, Groundwater quality in the alluvial aquifer system of north-west India: new evidence of the extent of anthropogenic and geogenic contamination, Sci. Total Environ., 599-600, 1433-1444.
  •  
  • 32. Lee, I.G. and Choi, S.H., 2012, Hydro-geochemical nature and nitrates contamination characters of groundwater in the youngdong, chungbuk province, Econ. Environ. Geol., 45(1), 23-30.
  •  
  • 33. Lokesh, K., 2013, A study of nitrate contamination in groundwater of delhi, India, Asian. J. Water Envion. Pollut., 10(2), 91-94.
  •  
  • 34. Lu, Y., Yang, X., Wu, Z., Xu, L., Xu, Y., and Qian, G., 2016, A novel control strategy for N2O formation by adjusting Eh in ni-trite/(FeII-III) carbonate green rust system, Chem. Eng. J., 304, 579-586.
  •  
  • 35. Matocha, C.J., Dhakal, P., and Pyzola, S.M., 2012, The role of abiotic and coupled biotic/abiotic mineral controlled redox processes in nitrate reduction, Adv. Agronomy., 115, 181-214.
  •  
  • 36. McMillan, S.G. and Schwertmann, U., 1998, Morphological and genetic relations between siderite, calcite, and goethite in a Low Moor Peat from southern Germany, Eur. J. Soil Sci., 49(2), 283-293.
  •  
  • 37. Moraghan, J.T. and Buresh, R.J., 1977, Chemical reduction of nitrite and nitrous oxide by ferrous iron, Soil Sci. Soc. Am. J., 41(1), 47-50.
  •  
  • 38. Noori, R., Dodangeh, M., Berndtsson, R., Hooshyaripor, F., Adamowski, J.F., Javadi, S., and Baghvand, A., 2018, A novel model for simulation of nitrate in aquifers, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-222.
  •  
  • 39. Obiri-Nyarko, F., Grajales-Mesa, S.J., and Malina, G., 2014, An overview of permeable reactive barriers for in situ sustainable groundwater remediation, Chemosphere, 111(2), 243-259.
  •  
  • 40. O¡¯Loughlin, E.J., Kelly, S.D., Cook, R.E., Csencsits, R., and Kemner, K. M., 2003a, Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide(greenrust): Formation of UO2 nanoparticles, Environ. Sci. Technol., 37(4), 721-727.
  •  
  • 41. O¡¯Loughlin, E.J., Kelly, S.D., Kemner, K.M., Csencsits, R., and Cook, R.E., 2003b. Reduction of Ag(I), Au(III), Cu(II), and Hg(II) by Fe(II)/Fe(III) hydroxysulfate green rust, Chemosphere, 53(5), 437-446.
  •  
  • 42. Otero, N., Torrento, C.A., Soler, A., Mencio, A., and Mas-Pla, J., 2009, Monitoring groundwater nitrate attenuation in a regional system coupling hydrogeology with multi-isotopic methods: the case of Plana de Vic, Agric. Ecosyst. Environ., 133(1-2), 103-113.
  •  
  • 43. Ottley, C.J., Davison, W., and Edmunds, W.M., 1997, Chemical catalysis of nitrate reduction by iron (II), Geochim. Cosmochim. Acta, 61(9), 1819-1828.
  •  
  • 44. Pabich, W.J., Valiela, I., and Hemond, H.F., 2001, Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, USA, Biogeochemistry, 55(3), 247-268.
  •  
  • 45. Pennino, M.J., Compton, J.E., and Leibowitz, S.G., 2017, Trends in drinking water nitrate violations across the united states, Environ. Sci. Technol., 51(22), 13450-13460.
  •  
  • 46. Petersen, H.J.S., 1979, Reduction of nitrate by iron(II), Acta Chem. Scand., 33, 795-796.
  •  
  • 47. Potter, P., Ramankutty, N., Bennett, E.M., and Donner, S.D., 2010, Characterizing the spatial patterns of global fertilizer application and manure production, Earth Interact., 14(2), 1-22.
  •  
  • 48. Rakshit, S., Matocha, C.J., and Coyne, M.S., 2008, Nitrite reduction by siderite, Soil Sci. Soc. Am. J., 72(4), 1070-1077.
  •  
  • 49. Re, V., Sacchi, E., Kammoun, S., Tringali, C., Zouari, K., and Daniele, S., 2017, Intergrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The chase of Grombalia Basin(Tunisia), Sci. Total Environ., 593, 664-676.
  •  
  • 50. Ren, Y., Zhou, J., Lai, B., Tang, W., and Zeng, Y., 2016, Fe0 and Fe0 fully covered with Cu0(Fe0+Fe/Cu) in fixed bed reactor for nitrate removal, Rsc, Adv., 6(110), 108229-108239.
  •  
  • 51. Rivett, M.O., Smith, J.W.N., Buss, S.R., and Morgan, P., 2007, Nitrate occurrence and attenuation in the major aquifers of England and Wales, Qutater. J. Eng. Geol. Hydrogeol., 40(4), 335-352.
  •  
  • 52. Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W., and Bemment, C.D., 2008, Nitrate attenuation in groundwater: a review of bioge-ochemical controlling processes, Water Res., 42(16), 4215-4232.
  •  
  • 53. Robertson, W.D., and Merkley, L.C., 2009, In-stream bioreactor for agricultural nitrate treatment, J. Environ. Qual., 38(1), 230-237.
  •  
  • 54. Saheb, M., Descotes, M., Neff, D., Matthiesen, H., Michelin, A., and Dillmann, P., 2010, Iron corrosion in an anoxic soil: compari-son between thermodynamic modelling and ferrous archaeological artefacts characterised along with the local in situ geochemical con-ditions, Appl. Geochem., 25(12), 1937-1948
  •  
  • 55. Schwientek, M., Einsiedl, F., Stichler, W., Stögbauer, A., Strauss., H., and Maloszewski, P., 2008, Evidence for denitrification regu-lated by pyrite oxidation in a heterogeneous porous groundwater system, Chem. Geol., 255(1-2), 60-67.
  •  
  • 56. Seiler, K.-P., and Vomberg, I., 2005, Denitrification in a karst aquifer with matrix porosity. In: Razowska-Jaworek, L., Sadurski, A. (Eds.), Nitrates in Groundwater, International Association of Hydrogeologists, Selected Papers 5, Balkema, Leiden.
  •  
  • 57. Senko, J.M., Dewers, T.A., and Krumholz, L.R., 2005, Effect of oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation, Appl. Environ. Microbiol., 71(11), 7172-7177.
  •  
  • 58. Shalev, N., Burg, A., Gavrieli, I., and Lazar, B., 2015, Nitrate contamination sources in aquifers underlying cultivated fields in an arid region - the arava valley, israel, Appl. Geochem., 63, 322-332.
  •  
  • 59. Shao, P., Tian, J., Yang, F., Duan, X., Gao, S., Shi, W., Luo, X., Cui, F., Luo, S., and Wang, S., 2018, Identification and regulation of active sites on nanodianonds: Establishing a highly efficient catalytic system for oxidation of organic contaminants, Adv. Funct. Mater., 28(13), 1705295.
  •  
  • 60. Sievert, S.M., Scott, K.M., Klotz, M.G., Chain, P.S., Hauser, L.J., Hemp, J., Hügler, M., Land, M., Lapidus, A., Larimer, F.W., Lu-cas, S., Malfatti, S.A., Meyer, F., Paulsen, I.T., Ren, Q., and Simon, J., 2008, Genome of the epsilonproteobacterial chemolithoauto-troph Sulfurimonas denitrificans, Appl. Environ. Microbiol., 74(4), 1145-1156.
  •  
  • 61. Singireddy, S., Gordon, A.D., Smirnov, A., Vance, M.A., Schoonen, M.A.A., Szilagyi, R.K., and Strongin, D.R., 2012, Reduction of nitrite and nitrate to ammonium on pyrite, Orig. Life Evol. Biosph., 42(4), 275-294.
  •  
  • 62. Straub, K.L., Benz, M., Schink, B., and Widdel, F., 1996, Anaerobic, nitrate-dependent microbial oxidation of ferrous iron, Appl. Environ. Microbiol., 62(4), 1458-1460.
  •  
  • 63. Summers, D.P., Basa, R.C.B., Khare, B., and Rodoni, D., 2012, Abiotic nitrogen fixation on terrestrial planets: Reduction of NO to ammonia by FeS, Astrobiology., 12(2), 107-114.
  •  
  • 64. Tagma, T., Hsissou, Y., Bouchaou, L., Bouragba, L., and Boutaleb, S., 2009, Groundwater nitrate pollution in Souss-Massa basin (south-west Morocco), Afr. J. Environ. Sci. Technol., 3(10), 301-309.
  •  
  • 65. Tai, Y.L., and Dempsey, B.A., 2009, Nitrite reduction with hydrous ferric oxide and Fe(II): stoichiometry, rate, and mechanism, Wa-ter Res., 43(2), 546-552.
  •  
  • 66. Tecon, R., and Or, D., 2017, Biophysical processes supporting the diversity of microbial life in soil, FEMS Microbiology Reviews., 41(5), 599-623.
  •  
  • 67. Tindall, J.A. and Chen, A., 2014, Variables that affect agricultural chemicals in groundwater in nebraska, Water. Air. Soil. Pollut., 225(2), 1862.
  •  
  • 68. Tong, S., Zhang, B., Feng, C., Zhao, Y., Chen, N., Hao, C., Pu, J., and Zhao, L., 2013, Characteristics of hetero-trophic/biofilm-electrode autotrophic denitrification of for nitrate re-moval from groundwater, Bioresour. Tchnol., 148, 121-127.
  •  
  • 69. Tong, S., Rodriguez-Gonzalez, L.C., Rayne, K.A., Stocks, J.L., Feng, C., and Ergas, S.J., 2018, Effect of pyrite pretreatment, particle size, dose, and biomass concentration on particulate pyrite autotrophic denitrification of nitrified domestic wastewater, Environ. Eng. Sci., 35(8), 875-886.
  •  
  • 70. Torrentó, C., Cama, J., Urmeneta, J., Otero, N., and Soler, A., 2010, Denitrification of groundwater with pyrite and Thiobacillus deni-trificans, Chem. Geol., 278(1-2), 80-91.
  •  
  • 71. Torrentó, C., Urmeneta, J., Otero, N., Soler, A., Viñas, M., and Cama, J., 2011, Enhanced denitrification in groundwater and sedi-ments from a nitrate-contaminated aquifer after addition of pyrite, Chem. Geol., 287(1-2), 90-101.
  •  
  • 72. Vaclavkova, S., Schultz-Jensen, N., Jacobsen, O.S., Elberling, B., and Aamand, J., 2015, Nitrate-controlled anaerobic oxidation of pyrite by Thiobacullus cultures, Geomicrobiol. J., 32(5), 412-419.
  •  
  • 73. Van Rijin, J., Tal, Y., and Barak, Y., 1996, Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor, Appl. Environ. Microbiol., 62(7), 2615-2620.
  •  
  • 74. Warneke, S., Schipper, L.A., Matiasek, M.G., Scow, K. M., Cameron, S., Bruesewitz, D.A., and McDonald, I.R., 2011, Nitrate re-moval, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds, Water Res., 45(17), 5463-5475.
  •  
  • 75. Wilcock, R.J., Nash, D., Schmidt, J., Larned, S.T., Rivers, M.R., and Feehan, P., 2011, Inputs of nutrients and fecal bacteria to freshwaters from irrigated agriculture: Case studies in Australia and New Zealand, Environ. Manag., 48(1), 198-211.
  •  
  • 76. Wilderer, P.A., Jones, W.L., and Dau, U., 1987, Competition in denitrification systems affecting reduction rate and accumulation of nitrite, Water Res., 21(2), 239-245.
  •  
  • 77. World Health Organization (WHO), 2016, Nitrate and nitrite in drinking water WHO/FWC/WSH/16.52, World Hearth Organization, Geneva, Switzerland., p. 33.
  •  
  • 78. Wu, D., Shao, B., Fu, M., Luo, C., and Liu, Z., 2015, Denitrification of nitrite by ferrous hydroxy complex: Effects on nitrous oxide and ammonium formation, Chem. Eng. J., 279, 149-155.
  •  
  • 79. Xu, D., Li, Y., Howard, A., and Guan, Y., 2013, Effect of earthworm Eisenia fetida and wetland plants on nitrification and denitrifica-tion potentials in vertical flow constructed wetland, Chemosphere, 92(2), 201-206.
  •  
  • 80. Xu, J., Hao, Z., Xie, C., Lv, X., Yang, Y., and Xu, X., 2012, Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zer-valent iron, Desalination, 284, 9-13.
  •  
  • 81. Xu, Z.X., Shao, L., Yin, H.L., Chu, H.Q., and Yao, Y.J., 2009, Biological Denitrification Using Corncobs as a Carbon Source and Biofilm Carrier, Water Environ. Res., 81(3), 242-247.
  •  
  • 82. Yu, H.M. and Shin, D.B., 2018, Mineralization and genetic environments of the central and main orebodies in the manhang deposit, goesan, J. Miner. Soc. Korea, 31(2), 87-101.
  •  
  • 83. Yun, S.W., Choi, H.M., and Lee, J.Y., 2014, Comparison of groundwater levles and groundwater qulities in six megacities of Korea, J. Geol. Soc. Korea, 50(4), 517-528.
  •  
  • 84. Yun, S.W., Jeon, W.H., and Lee, J.Y., 2017, Evaluation of hydrochemical characteristics of groundwater and stream water in a heavy agricultural region of the haean basin, J. Geol. Soc. Korea, 53(5), 727-742.
  •  
  • 85. Zhang, X., Davidson, E.A., Mauzerall, D.L., Searchinger, T.D., Dumas, P., and Shen, Y., 2015, Managing nitrogen for sustainable development, Nature, 528, 51-59.
  •  
  • 86. Zheng, M., 2018, Aerobic denitrification characteristics and mechanism of peudomonas stutzeri PCN-1, Nitrogen removal character-istics of aerobic denitrifying bacteria and their applications in nitrogen oxides emission mitigation, Springer. Singapore., 51-69. doi:10.1007/978-981-13-2432-1_3.
  •  

This Article

  • 2020; 25(S1): 16-27

    Published on Jun 30, 2020

  • 10.7857/JSGE.2020.25.s1.016
  • Received on May 8, 2020
  • Revised on May 15, 2020
  • Accepted on May 25, 2020

Correspondence to

  • Soon-Oh Kim
  • Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)

  • E-mail: sokim@gnu.ac.kr