• Techniques to Estimate Permeability Based on Spectral Induced Polarization Survey
  • Bitnarae Kim1·AHyun Cho1·Andreas Weller2·Myung Jin Nam1,3*

  • 1Department of energy and mineral resources engineering, Sejong University, South Korea
    2Clausthal University of Technology, Germany
    3Department of energy resources and geosystems engineering, Sejong University, South Korea

  • 광대역유도분극 탐사에 기초한 유체투과도 예측기법들
  • 김빛나래1·조아현1·Andreas Weller2·남명진1,3*

  • 1세종대학교 에너지자원공학과
    2Clausthal University of Technology, Germany
    3세종대학교 지구자원시스템공학과

References
  • 1. Attwa, M. and Günther, T., 2013, Spectral induced polarization measurements for predicting the hydraulic conductivity in sandy aqui-fers, Hydrol. Earth Syst. Sci., 17(10) 4079-4094.
  •  
  • 2. Attwa, M., Günther, T., Grinat, M., and Binot, F. 2009, Transmissivity estimation from sounding data of holocene tidal deposits in the North Eastern Part of Cuxhaven, Germany. Proceedings of the Near Surface 2009-15th EAGE European Meeting of Environmental and Engineering Geophysics, European Association of Geoscientists & Engineers, pp. cp-134.
  •  
  • 3. Attwa, M. and Günther, T., 2012, Application of spectral induced polarization (SIP) imaging for characterizing the near-surface geol-ogy: an environmental case study at Schillerslage, Germany, Aust. J. Basic Appl. Sci., 6(9), 693-701.
  •  
  • 4. Banavar, J.R. and Johnson, D.L., 1987, Characteristic pore sizes and transport in porous media, Phys. Rev. B, 35(13), 7283-7286.
  •  
  • 5. Binley, A., Slater, L.D., Fukes, M., and Cassiani, G., 2005, Relationship between spectral induced polarization and hydraulic proper-ties of saturated and unsaturated sandstone, Water Resour. Res., 41(12).
  •  
  • 6. Börner, F.D., Schopper, J.R., and Weller, A., 1996, Evaluation of transport and storage properties in the soil and Groundwater zone from induced polarization measurements1, Geophys. Prospect., 44(4), 583-601.
  •  
  • 7. Brunauer, S., Emmett, P.H., and Teller, E., 1938, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60(2), 309-319.
  •  
  • 8. Carman, P.C., 1939, Permeability of saturated sands, soils and clays, The Journal of Agricultural Science, 29(2), 262-273.
  •  
  • 9. Chelidze, T.L. and Gueguen, Y., 1999, Electrical spectroscopy of porous rocks: A review-I. Theoretical models. Geophys, J. In, 137(1), 1-15.
  •  
  • 10. Cole, K.S. and Cole, R.H., 1941, Dispersion and absorption in dielectrics I. Alternating current characteristics, J. Chem. Phys., 9(4), 341-351.
  •  
  • 11. De Lima, O.A.L. and Niwas, S., 2000, Estimation of hydraulic parameters of shaly sandstone aquifers from geoelectrical measure-ments, J Hydrol (Amst), 235(1-2), 12-26.
  •  
  • 12. Fiandaca, G., Maurya, P.K., Balbarini, N., Hördt, A., Christiansen, A.V., Foged, N., Bjerg, P.L., and Auken, E., 2018, Permeability estimation directly from logging‐while‐drilling Induced Polarization data, Water Resour. Res., 54(4), 2851-2870.
  •  
  • 13. Heigold, P.C., Gilkeson, R.H., Cartwright, K., and Reed, P.C., 1979, Aquifer transmissivity from surficial electrical methods, Groundwater, 17(4), 338-345.
  •  
  • 14. Hördt, A., Blaschek, R., Kemna, A., and Zisser, N., 2007, Hydraulic conductivity estimation from induced polarisation data at the field scale-the Krauthausen case history, J. Appl. Geophy., 62(1), 33-46.
  •  
  • 15. Hördt, A., Druiventak, A., Blaschek, R., Binot, F., Kemna, A., Kreye, P., and Zisser, N., 2009, Case histories of hydraulic conductiv-ity estimation with induced polarization at the field scale, Near Surf. Geophys., 7(5-6), 529-545.
  •  
  • 16. Johnson, D.L., Koplik, J., and Schwartz, L.M., 1986, New pore-size parameter characterizing transport in porous media, Physical Review Letters, 57(20), 2564-2567.
  •  
  • 17. Katz, A.J. and Thompson, A.H., 1986, Quantitative prediction of permeability in porous rock, Phys. Rev. B, 34(11), 8179-8181.
  •  
  • 18. Katz, A.J. and Thompson, A.H., 1987, Prediction of rock electrical conductivity from mercury injection measurements, J. Geophys. Res. Solid Earth, 92(B1), 599-607.
  •  
  • 19. Kim, B., Nam, M.J., Jang, H., Jang, H., Son, J. S., and Kim, H.J., 2017, The Principles and Practice of Induced Polarization Method, Geophys. and Geophys. Explor., 20(2), 100-113.
  •  
  • 20. Kozeny, J., 1927, Uber kapillare leitung der wasser in boden. Royal Academy of Science, Vienna, Proc. Class I, 136, 271-306.
  •  
  • 21. Kruschwitz, S., Prinz, C., and Zimathies, A., 2016, Study into the correlation of dominant pore throat size and SIP relaxation fre-quency, J. Appl. Geo., 135, 375-386.
  •  
  • 22. Leroy, P., Revil, A., Kemna, A., Cosenza, P., and Ghorbani, A., 2008, Complex conductivity of water-saturated packs of glass beads, J. Colloid. Interface. Sci., 321(1), 103-117.
  •  
  • 23. Leroy, P., Li, S., Jougnot, D., Revil, A., and Wu, Y., 2017, Modelling the evolution of complex conductivity during calcite precipita-tion on glass beads. Geophys, J. In, 209(1), 123-140.
  •  
  • 24. Maurya, P. K., Balbarini, N., M©ªller, I., R©ªnde, V., Christiansen, A.V., Bjerg, P.L., Auken, E., and Fiandaca, G., 2018, Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization, Geophys. J. In, 213(2), 770-785.
  •  
  • 25. Nordsiek, S. and Weller, A., 2008, A new approach to fitting induced-polarization spectra, Geophysics, 73(6), F235-F245.
  •  
  • 26. Olhoeft, G.R., 1985, Low-frequency electrical properties, Geophysics, 50(12), 2492-2503.
  •  
  • 27. Pape, H., Riepe, L., and Schopper, J.R., 1987, Theory of self‐similar network structures in sedimentary and igneous rocks and their investigation with microscopical and physical methods, J. Microsc., 148(2), 121-147.
  •  
  • 28. Pelton, W.H., Ward, S.H., Hallof, P.G., Sill, W.R., and Nelson, P.H., 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics, 43(3), 588-609.
  •  
  • 29. Purvance, D.T. and Andricevic, R., 2000, Geoelectric characterization of the hydraulic conductivity field and its spatial structure at variable scales, Water. Resour. Res., 36(10), 2915-2924.
  •  
  • 30. Revil, A. and Cathles, III L.M., 1999, Permeability of shaly sands, Water Resour. Res., 35(3), 651-662.
  •  
  • 31. Revil, A., Karaoulis, M., Johnson, T., and Kemna, A., 2012, Review: Some low-frequency electrical methods for subsurface charac-terization and monitoring in hydrogeology, Hydrogeol. J., 20, 617-658.
  •  
  • 32. Revil, A., 2013, Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1GHz, Water Resour. Res., 49(1), 306-327.
  •  
  • 33. Robinson, J., Slater, L., Weller, A., Keating, K., Robinson, T., Rose, C., and Parker, B., 2018, On permeability prediction from com-plex conductivity measurements using polarization magnitude and relaxation time, Water Resour. Res., 54(5), 3436-3452.
  •  
  • 34. Scott, J.B. and Barker, R.D., 2003, Determining pore‐throat size in Permo‐Triassic sandstones from low‐frequency electrical spec-troscopy, Geophys. Res. Lett., 30(9).
  •  
  • 35. Scott, J.B.T. and Barker, R.D., 2005, Characterization of sandstone by electrical spectroscopy for stratigraphical and hydrogeological investigations, Q. J. Eng. Geol. Hydrogeol., 38, 143-154.
  •  
  • 36. Slater, L.D. and Lesmes, D., 2002, IP interpretation in environmental investigations, Geophysics, 67(1), 77-88.
  •  
  • 37. Slater, L., Ntarlagiannis, D., and Wishart, D., 2006, On the relationship between induced polarization and surface area in metal-sand and clay-sand mixtures, Geophysics, 71(2), A1-A5.
  •  
  • 38. Slater, L., 2007, Near surface electrical characterization of hydraulic conductivity: From petrophysical properties to aquifer geome-tries-A review, Surv. Geophys., 28(2-3), 169-197.
  •  
  • 39. Vinegar, H.J. and Waxman, M.H., 1984, Induced polarization of shaly sands, Geophysics, 49(8), 1267-1287.
  •  
  • 40. Wait, J., 2012, Geo-electromagnetism. Elsevier.
  •  
  • 41. Weller, A., Slater, L., Nordsiek, S., and Ntarlagiannis, D., 2010a, On the estimation of specific surface per unit pore volume from induced polarization: A robust empirical relation fits multiple data sets, Geophysics, 75(4), WA105-WA112.
  •  
  • 42. Weller, A., Nordsiek, S., and Debschütz, W., 2010b, Estimating permeability of sandstone samples by nuclear magnetic resonance and spectral-induced polarization, Geophysics, 75(6), E215-E226.
  •  
  • 43. Weller, A., Slater, L., Binley, A., Nordsiek, S., and Xu, S., 2015, Permeability prediction based on induced polarization: Insights from measurements on sandstone and unconsolidated samples spanning a wide permeability range, Geophysics, 80(2), D161-D173.
  •  
  • 44. Weller, A. and Slater, L., 2019, Permeability estimation from induced polarization: an evaluation of geophysical length scales using an effective hydraulic radius concept, Near Surf. Geophys., 17(6), 581-594.
  •  
  • 45. Wong, J., 1979, An electrochemical model of the induced-polarization phenomenon in disseminated sulfide ores, Geophysics, 44(7), 1245-1265.
  •  

This Article

  • 2020; 25(S1): 55-69

    Published on Jun 30, 2020

  • 10.7857/JSGE.2020.25.s1.055
  • Received on May 6, 2020
  • Revised on May 27, 2020
  • Accepted on Jun 19, 2020

Correspondence to

  • Myung Jin Nam
  • 1Department of energy and mineral resources engineering, Sejong University, South Korea
    3Department of energy resources and geosystems engineering, Sejong University, South Korea

  • E-mail: nmj1203@gmail.com , nmj1203@sejong.ac.kr