• Induced Polarization Surveys of Contaminants and Introduction to Case Studies
  • Bitnarae Kim1·Desy Caesary1·Huieun Yu1·AHyun Cho1·Seo Young Song1·Sung Oh Cho1·Inseok Joung1·Myung Jin Nam1,2*

  • 1Department of Energy and Mineral Resources Engineering, Sejong University, South Korea
    2Department of Energy Resources and Geosystems Engineering, Sejong University, South Korea

  • 오염원에 대한 유도분극탐사 반응 및 사례 소개
  • 김빛나래1·Desy Caesary1·유희은1·조아현1·송서영1·조성오1·정인석1·남명진1,2*

  • 1세종대학교 에너지자원공학과
    2세종대학교 지구자원시스템공학과

References
  • 1. Abdel Aal, G.Z., Slater, L.D., and Atekwana, E.A., 2006, Induced-polarization measurements on unconsolidated sediments from a site of active hydrocarbon biodegradation, Geophysics, 71(2), H13-H24.
  •  
  • 2. Abdel Aal, G.Z., Atekwana, E., Radzikowski, S., and Rossbach, S., 2009, Effect of bacterial adsorption on low frequency electrical properties of clean quartz sands and iron‐oxide coated sands, Geophys. Res. Lett., 36(4).
  •  
  • 3. Abdel Aal, G.Z., Atekwana, E.A., Slater, L.D., and Atekwana, E.A., 2004, Effects of microbial processes on electrolytic and interfa-cial electrical properties of unconsolidated sediments, Geophys. Res. Lett., 31(12).
  •  
  • 4. Abdullahi, N.K., Osazuwa, I.B., and Sule, P.O., 2011, Application of integrated geophysical techniques in the investigation of groundwater contamination: a case study of municipal solid waste leachate, Ozean. J. Appl. Sci., 4(1), 7-25.
  •  
  • 5. Abu-Zeid, N., Bianchini, G., Santarato, G., and Vaccaro, C., 2004, Geochemical characterisation and geophysical mapping of Landfill leachates: the Marozzo canal case study (NE Italy), Environ. Geol., 45(4), 439-447.
  •  
  • 6. Anderson, W.G., 1986, Wettability literature survey-part 1: rock/oil/brine interactions and the effects of core handling on wettability, Journal of petroleum technology, 38(10), 1-125.
  •  
  • 7. Atekwana, E. and Atekwana, E., 2010, Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review, Sur-vev, Geophysics., 31(2), 247-283.
  •  
  • 8. Atekwana, E.A., Sauck, W.A., and Werkema Jr, D.D., 2000, Investigations of geoelectrical signatures at a hydrocarbon contaminated site, J. Appl. Geophy., 44(2-3), 167-180.
  •  
  • 9. Atekwana, Estella A., D. Dale Werkema, and Eliot A. Atekwana, 2006, Biogeophysics: The effects of microbial processes on geo-physical properties of the shallow subsurface, Applied hydrogeophysics, Springer, Dordrecht, 161-193.
  •  
  • 10. Blondel, A., Schmutz, M., Franceschi, M., Tichané, F., and Carles, M., 2014, Temporal evolution of the geoelectrical response on a hydrocarbon contaminated site, J. Appl. Geophy., 103, 161-171.
  •  
  • 11. Börner, F., Gruhne, M., and Schön, J., 1993, Contamination indications derived from electrical properties in the low frequency range, Geophys. Prospect., 41(1), 83-98.
  •  
  • 12. Cardarelli, E. and Di Filippo, G., 2009, Electrical resistivity and induced polarization tomography in identifying the plume of chlorin-ated hydrocarbons in sedimentary formation: a case study in Rho (Milan-Italy). Waste Manag. Res., 27(6), 595-602.
  •  
  • 13. Carlson, K.M., Goodman, L.K., and May-Tobin, C.C., 2015, Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations, Environ. Res. Lett., 10(7), 074006.
  •  
  • 14. Carlson, N.R. and Urquhart, S.A., 2004, February. Comparisons Of Ip And Resistivity Data At Several Old, Buried Landfills. Pro-ceedings of the In 17th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems (pp. cp-186). European Association of Geoscientists & Engineers, p. cp-186.
  •  
  • 15. Cassiani, G., Kemna, A., Villa, A., and Zimmermann, E., 2009, Spectral induced polarization for the characterization of free‐phase hydrocarbon contamination of sediments with low clay content, Near Surf. Geophys., 7(5-6), 547-562.
  •  
  • 16. Cassidy, J., 2002, The role of microtine rodents in contaminant/solute transport at the landscape level (Doctoral dissertation, MS The-sis, Oregon State University, Corvallis).
  •  
  • 17. Cozzarelli, I.M., Baedecker, M.J., Eganhouse, R.P., and Goerlitz, D.F., 1994, The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater, Geochimica et Cosmochimica Acta, 58(2), 863-877.
  •  
  • 18. Davis, C.A., Atekwana, E., Atekwana, E., Slater, L.D., Rossbach, S., and Mormile, M.R., 2006, Microbial growth and biofilm for-mation in geologic media is detected with complex conductivity measurements, Geophys. Res. Lett, 33(18).
  •  
  • 19. Doherty, R., Kulessa, B., Ferguson, A.S., Larkin, M.J., Kulakov, L.A., and Kalin, R.M., 2010, A microbial fuel cell in contaminated ground delineated by electrical self‐potential and normalized induced polarization data, J. Geophys. Res: Biogeosciences, 115(G3).
  •  
  • 20. Draskovits, P., 1994, Application of induced polarization methods in integrated studies of ground water exploration and characteriza-tion of subsurface contamination, In The John S. Sumner Mem. Int. Workshop Induced Polarization (IP) in Mining and The Envi-ronment. Dep. Min, Geol. Eng., Univ. Arizona, Tucson, AZ.
  •  
  • 21. Frangos, W., and Andrezal, T., 1994, IPmeasurements at contaminant and toxic waste sites in Slovakia. In The John S. Sumner Mem. Int. Workshop Induced Polarization (IP) in Mining and The Environment. Dep. Min, Geol. Eng., Univ. Arizona, Tucson, AZ.
  •  
  • 22. Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E., and Christiansen, A.V., 2012, Mapping of landfills using time‐domain spectral induced polarization data: the Eskelund case study, Near Surf. Geophys., 10(6), 575-586.
  •  
  • 23. Jegede, A.J., Aimufua, G.I.O., and Akosu, N.I., 2012, Electronic Voting: A Panacea for electoral irregularities in developing countries, International Journal of Science and Knowledge, 1(1), 17-37.
  •  
  • 24. Johansson, B., Jones, S., Dahlin, T. and Flyhammar, P., 2007, September. Comparisons of 2D-and 3D-inverted resistivity data as well as of resistivity-and IP-surveys on a landfill. Proceedings of the In Near Surface 2007-13th EAGE European Meeting of Envi-ronmental and Engineering Geophysics.
  •  
  • 25. Kim, B., Nam, M.J., Jang, H., Jang, H., Son, J. S., and Kim, H.J., 2017, The Principles and Practice of Induced Polarization Method, Geophys. and Geophys. Explor., 20(2), 100-113.
  •  
  • 26. Kühlers, D., Bethge, E., Hillebrand, G., Hollert, H., Fleig, M., Lehmann, B., Maier, M., Mohrlok, U., and Wölz, J., 2009, Contami-nant transport to public water supply wells via flood water retention areas, Nat. Hazards Earth Syst. Sci., 9(4), 1047-1058.
  •  
  • 27. Lesmes, D.P. and Frye, K.M., 2001, Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone, J. Geophys. Res. Solid Earth, 106(B3), 4079-4090.
  •  
  • 28. Maier, R.M., Pepper, I.L., and Gerba, C.P., 2009, Environmental microbiology (Vol. 397). Academic press.
  •  
  • 29. Martin, T. and Paul, C.J., 2018, IP lab measurements on E. coli-sand-mixtures. Proceedings of the In 5th International Workshop on Induced Polarization.
  •  
  • 30. Maurya, P.K., 2017, Imaging lithology, water conductivity, and hydraulic permeability at contaminated sites with induced polarization. Aarhus university, Denmark.
  •  
  • 31. Maurya, P.K., Balbarini, N., M©ªller, I., R©ªnde, V., Christiansen, A.V., Bjerg, P.L., Auken, E., and Fiandaca, G., 2018, Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization, Geophys. J. In., 213(2), 770-785.
  •  
  • 32. Mewafy, F.M., Werkema Jr, D.D., Atekwana, E.A., Slater, L.D., Aal, G.A., Revil, A., and Ntarlagiannis, D., 2013, Evidence that bio-metallic mineral precipitation enhances the complex conductivity response at a hydrocarbon contaminated site, J. Appl. Geophy., 98, 113-123.
  •  
  • 33. Ntarlagiannis, D. and Ferguson, A., 2008, SIP response of artificial biofilms, Geophysics, 74(1), A1-A5.
  •  
  • 34. Ntarlagiannis, D., Williams, K.H., Slater, L., and Hubbard, S., 2005, Low‐frequency electrical response to microbial induced sulfide precipitation, J. Geophys. Res. Biogeosciences, 110(G2).
  •  
  • 35. Ntarlagiannis, D., Yee, N., and Slater, L., 2005, On the low‐frequency electrical polarization of bacterial cells in sands, Geophys. Res. Lett., 32(24).
  •  
  • 36. Olhoeft, G.R., 1985, Low-frequency electrical properties, Geophysics, 50(12), 2492-2503.
  •  
  • 37. Placencia-Gómez, E., Parviainen, A., Slater, L., and Leveinen, J., 2015, Spectral induced polarization (SIP) response of mine tailings, J. Contam. Hydrol., 173, 8-24.
  •  
  • 38. Power, C., Tsourlos, P., Ramasamy, M., Nivorlis, A., and Mkandawire, M., 2018, Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia, Canada, J. Appl. Geophy., 150, 40-51.
  •  
  • 39. Revil, A., Schmutz, M., and Batzle, M.L., 2011, Influence of oil wettability upon spectral induced polarization of oil-bearing sands, Geophysics, 76(5), A31-A36.
  •  
  • 40. Revil, A., Wu, Y., Karaoulis, M., Hubbard, S.S., Watson, D.B., and Eppehimer, J.D., 2013, Geochemical and geophysical responses during the infiltration of fresh water into the contaminated saprolite of the Oak Ridge Integrated Field Research Challenge site, Ten-nessee, Water Resour. Res., 49(8), 4952-4970.
  •  
  • 41. Reynolds, J.M., 1997, An Introduction to Applied and Environmental Geophysics, John Wiley, Chichester, U. K.
  •  
  • 42. Schmutz, M., Blondel, A., and Revil, A., 2012, Saturation dependence of the quadrature conductivity of oil‐bearing sands, Geophys. Res. Lett., 39(3).
  •  
  • 43. Schmutz, M., Revil, A., Vaudelet, P., Batzle, M., Viñao, P.F., and Werkema, D.D., 2010, Influence of oil saturation upon spectral induced polarization of oil-bearing sands, Geophys. J. In., 183(1), 211-224.
  •  
  • 44. Schwartz, N., Shalem, T., and Furman, A., 2014, The effect of organic acid on the spectral-induced polarization response of soil, Ge-ophys. J. In., 197(1), 269-276.
  •  
  • 45. Slater, L.D. and Lesmes, D., 2002, IP interpretation in environmental investigations, Geophysics, 67(1), 77-88.
  •  
  • 46. Vanhala, H., Soininen, H., and Kukkonen, I., 1992, Detecting organicchemical contaminants by spectral-induced polarization method in glacial till environment, Geophysics, 57(8), 1014-1017.
  •  
  • 47. Vanhala, H., 1997, Mapping oil‐contaminated sand and till with the spectral induced polarization (SIP) method, Geophys. Prospect, 45(2), 303-326.
  •  
  • 48. Yu, H., Kim, B., Song, S.Y., Cho, S.O., Caesary, D., and Nam, M.J., 2019, Change in Physical Properties depending on Contami-nants and Introduction to Case Studies of Geophysical Surveys Applied to Contaminant Detection, Geophys. and Geophys. Explor., 22(3), 132-148.
  •  

This Article

  • 2020; 25(S1): 86-100

    Published on Jun 30, 2020

  • 10.7857/JSGE.2020.25.s1.086
  • Received on May 28, 2020
  • Revised on Jun 12, 2020
  • Accepted on Jun 23, 2020

Correspondence to

  • Myung Jin Nam
  • 1Department of Energy and Mineral Resources Engineering, Sejong University, South Korea
    2

  • E-mail: nmj1203@gmail.com , nmj1203@sejong.ac.kr