• Assessment of Potential Natural Attenuation of Arsenic by Geological Media During Managed Aquifer Recharge 
  • Dasomi Park1 ·Sung Pil Hyun2 ·Kyoochul Ha1,3·Hee Sun Moon1,3,*

  • 1 Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources
    2 Center for HLW Geological Disposal, Korea Institute of Geoscience and Mineral Resources
    3 Department of Mineral and Groundwater Resources, University of Science and Technology(UST)

  • 대수층 함양관리에 있어서 지질매질에 의한 비소 자연저감 가능성 평가 
  • 박다소미1 ·현성필2 ·하규철1,3 ·문희선1,3, *

  • 1 한국지질자원연구원 지질환경연구본부 지하수연구센터
    2 한국지질자원연구원 국토지질연구본부 방사성폐기물지층처분연구단
    3 과학기술연합대학교대학원 광물지하수자원학과

References
  • 1. Arco-Lazaro, E., Agudo, I., Clements, R., and Bernal, M.P., 2016, Arsenic(V) adsorption-desorption in agricultural and mine soils: Effects of organic matter addition and phosphate competition. Environ. Pollu. 216, 71-79.
  •  
  • 2. Balasubramanian, N., Kojima., T., Ahmed Basha, C., and Srinivasakannan, C., 2009, Removal of arsenic from aqueous solution using clectroncoagulation, J.Hazar.Materal., 167(1-3), 966-969.
  •  
  • 3. Guo, H., Stüben, D., and Berner, Z., 2007, Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent, J. Colloid Interface Sci., 315(1), 47-53.
  •  
  • 4. Im, H., Yeo, I. Maeng, S.K., and Choi, H., 2015, Removal of organic matter and pharmaceuticals in wastewater effluent through managed aquifer recharge, J. Korean Soc. Environ. Eng., 37(3), 182-190.
  •  
  • 5. Jun, K.S., Chung, E.-S., Sung, J.-Y., and Lee, K.S., 2011, Development of spatial water resourcs vulnerability index considering climate change impacts, Sci. Total Environ., 409(24), 5228-5242.
  •  
  • 6. Jung, M.C., Jung, M.Y., and Choi, Y.W., 2004, Environmental assessment of heavy metals around abandoned metalliferous mine in Korea, Econ. Environ. Geol., 37(1), 21-33.
  •  
  • 7. Kam, S.K., Kim, K.S., Ahn, B.J., and Lee, M.G., 2002, Adsorption and desorption of triadimefon by natural and synthetic zeolites, Korean Chem. Eng. Res., 40(2), 265-273.
  •  
  • 8. Kim, Y.C. and Kim, Y.J., 2010, A review on the state of the art in the management of aquifer recharge, J. Geol. Soc. Korea, 46(5), 521-533.
  •  
  • 9. Knox, R.C. and Canter, L.W., 1996, Prioritization of ground water contaminants and sources, Air Soil Pollut., 88(3-4), 205-226.
  •  
  • 10. Korea institute of Geoscience and Mineral Resources (KIGAM), 2016, Final report on Development of Comsite Artificial Recharge Tecnologies for Groundwater Conservation and Utilization. p. 25 and p. 101.
  •  
  • 11. Korea Ministry of Environment, 2003, Rules for water conservation of groundwater, Environment Ordinance No. 140.
  •  
  • 12. Lee, S.H, Yoon, H.S., Kim, D.H., Shin, E., Kim, Y.C., Ko, K.S., and Ha, K.C., 2016, Evaluation of field feasibility and efficiency of hydraulic ram pump, Econ. Environ. Geol., 49(3), 243-248.
  •  
  • 13. Neil, C.W., Yang, J., Schupp, D., and Jun, Y.-S., 2014, Water chemistry impacts on arsenic mobilization from arsenopyrite dissolu-tion and secondary mineral precepiation:Impilications for managed aquifer recharge, Environ., Sci., Technol., 48(8), 4395-4405.
  •  
  • 14. Lenoble, V., Bouras, O., Deluchat, V., Serpaud, B., and Bollinger, J.C., 2002, Arsenic adsorption onto pillared clays and iron oxides, J. Colloid Interface Sci., 255(1), 52-58.
  •  
  • 15. Matschullat, J., 2000, Arsenic in the geosphere - a review, Sci. Total Environ., 249(1-3), 297-312.
  •  
  • 16. Mondal, P., Bhowmick, S., Chatterjee, D., Figoli, A., and Van der Bruggen, B., 2013, Remediation of inorganic arsenic in ground-water for safe water supply: A critical assessment of technological solutions, Chemosphere, 92(2), 157-170.
  •  
  • 17. Park, K.M., Lee, H.J., Ku, M.H., and Kim, Y.C., 2016, Strategies for an effective artificial recharge in alluvial stream-aquifer systems undergoing heavy seasonal pumping, J. Geol. Soc. Korea, 52(3), 211-219.
  •  
  • 18. Patterson, B.M., Shackleton, M., Furness, A.J., Bekele, E., Pearce, J., Linge, K.L., Busetti, F., Spadek, T., and Toze, S., 2011, Be-haviour and fate of nine recycled water trace organics during managed aquifer recharge in an aerobic aquifer, J. Contam. Hydrol., 122(1-4), 53-62.
  •  
  • 19. Payne, K.B. and Abdel-Fattah, T.M., 2005, Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength, J. Environ. Sci. Health, Part A, 40(4), 723-749.
  •  
  • 20. Wallis, I., Prommer, H., Simmons, C.T., Post, V., and Stuyfzand, P.J., 2010, Evaluation of conceptual and numerical models for arse-nic mobilization and attenuation during managed aquifer recharge, Environ. Sci. Technol., 44(13), 5035-5041.
  •  
  • 21. Wu., X., Bowers, B., Kim, D., Lee, B., and Jun, Y.-S., 2019, Dissolved organic matter affects arsenic mobilisty and iron(III) (hydr)oxide formation: Implications for managed aquifer recharge, Environ., Sci. Technol., 53(24), 14357-14367.
  •  
  • 22. Yannick, M., Charlotte, H., Nicolas, M., and Michèle R., 2011, Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility, Desalination, 281, 93-99.
  •  

This Article

  • 2020; 25(3): 12-22

    Published on Sep 30, 2020

  • 10.7857/JSGE.2020.25.3.012
  • Received on Jul 29, 2020
  • Revised on Aug 3, 2020
  • Accepted on Aug 21, 2020

Correspondence to

  • Hee Sun Moon
  • 1 Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources
    3

  • E-mail: hmoon@kigam.re.kr